Algebraic invariants of projective monomial curves associated to generalized arithmetic sequences

التفاصيل البيبلوغرافية
العنوان: Algebraic invariants of projective monomial curves associated to generalized arithmetic sequences
المؤلفون: Ignacio García-Marco, Isabel Bermejo, Eva García-Llorente
المصدر: Journal of Symbolic Computation. 81:1-19
بيانات النشر: Elsevier BV, 2017.
سنة النشر: 2017
مصطلحات موضوعية: Monomial, Homogeneous coordinate ring, 010103 numerical & computational mathematics, Type (model theory), Commutative Algebra (math.AC), 01 natural sciences, Combinatorics, Mathematics - Algebraic Geometry, symbols.namesake, Gröbner basis, FOS: Mathematics, 0101 mathematics, Algebraic Geometry (math.AG), Mathematics, Hilbert–Poincaré series, Discrete mathematics, Hilbert series and Hilbert polynomial, Algebra and Number Theory, Mathematics::Commutative Algebra, 010102 general mathematics, Mathematics - Commutative Algebra, Invariant theory, Computational Mathematics, Arithmetic progression, symbols, 05E40, 14M25, 20M25
الوصف: Let K be an infinite field and let m 1 ⋯ m n be a generalized arithmetic sequence of positive integers, i.e., there exist h , d , m 1 ∈ Z + such that m i = h m 1 + ( i − 1 ) d for all i ∈ { 2 , … , n } . We consider the projective monomial curve C ⊂ P K n parametrically defined by x 1 = s m 1 t m n − m 1 , … , x n − 1 = s m n − 1 t m n − m n − 1 , x n = s m n , x n + 1 = t m n . In this work, we characterize the Cohen–Macaulay and Koszul properties of the homogeneous coordinate ring K [ C ] of C . Whenever K [ C ] is Cohen–Macaulay we also obtain a formula for its Cohen–Macaulay type. Moreover, when h divides d , we obtain a minimal Grobner basis G of the vanishing ideal of C with respect to the degree reverse lexicographic order. From G we derive formulas for the Castelnuovo–Mumford regularity, the Hilbert series and the Hilbert function of K [ C ] in terms of the sequence.
تدمد: 0747-7171
DOI: 10.1016/j.jsc.2016.11.001
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::feb405565dc78c951690cb011dbd9202
https://doi.org/10.1016/j.jsc.2016.11.001
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....feb405565dc78c951690cb011dbd9202
قاعدة البيانات: OpenAIRE
الوصف
تدمد:07477171
DOI:10.1016/j.jsc.2016.11.001