The scINSIGHT Package for Integrating Single-Cell RNA-Seq Data from Different Biological Conditions

التفاصيل البيبلوغرافية
العنوان: The scINSIGHT Package for Integrating Single-Cell RNA-Seq Data from Different Biological Conditions
المؤلفون: Qian, Kun, Shiwei Fu, Hongwei Li, Li, Wei Vivian
المصدر: Journal of Computational Biology. 29:1233-1236
بيانات النشر: Mary Ann Liebert Inc, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Sequence Analysis, RNA, Gene Expression Profiling, Data_MISCELLANEOUS, Computational Mathematics, ComputingMethodologies_PATTERNRECOGNITION, Computational Theory and Mathematics, Modeling and Simulation, Exome Sequencing, Genetics, Cluster Analysis, RNA-Seq, Single-Cell Analysis, Molecular Biology, Algorithms
الوصف: Data integration is a critical step in the analysis of multiple single-cell RNA sequencing samples to account for heterogeneity due to both biological and technical variability. scINSIGHT is a new integration method for single-cell gene expression data, and can effectively use the information of biological condition to improve the integration of multiple single-cell samples. scINSIGHT is based on a novel non-negative matrix factorization model that learns common and condition-specific gene modules in samples from different biological or experimental conditions. Using these gene modules, scINSIGHT can further identify cellular identities and active biological processes in different cell types or conditions. Here we introduce the installation and main functionality of the scINSIGHT R package, including how to preprocess the data, apply the scINSIGHT algorithm, and analyze the output.
تدمد: 1557-8666
DOI: 10.1089/cmb.2022.0244
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fb1e7e74a8535d9b16bd35eb7179fc94
https://doi.org/10.1089/cmb.2022.0244
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....fb1e7e74a8535d9b16bd35eb7179fc94
قاعدة البيانات: OpenAIRE
الوصف
تدمد:15578666
DOI:10.1089/cmb.2022.0244