metID: an R package for automatable compound annotation for LC−MS-based data

التفاصيل البيبلوغرافية
العنوان: metID: an R package for automatable compound annotation for LC−MS-based data
المؤلفون: Zheng-Jiang Zhu, Michael Snyder, Liang Liang, Songjie Chen, Kévin Contrepois, Xiaotao Shen, Si Wu
المصدر: Bioinformatics
بيانات النشر: Oxford University Press (OUP), 2021.
سنة النشر: 2021
مصطلحات موضوعية: Statistics and Probability, Supplementary data, Information retrieval, AcademicSubjects/SCI01060, Computer science, Process (engineering), Systems Biology, Applications Notes, Biochemistry, Computer Science Applications, Computational Mathematics, R package, Annotation, Untargeted metabolomics, Computational Theory and Mathematics, Fully automatic, Molecular Biology
الوصف: Summary Accurate and efficient compound annotation is a long-standing challenge for LC–MS-based data (e.g. untargeted metabolomics and exposomics). Substantial efforts have been devoted to overcoming this obstacle, whereas current tools are limited by the sources of spectral information used (in-house and public databases) and are not automated and streamlined. Therefore, we developed metID, an R package that combines information from all major databases for comprehensive and streamlined compound annotation. metID is a flexible, simple and powerful tool that can be installed on all platforms, allowing the compound annotation process to be fully automatic and reproducible. A detailed tutorial and a case study are provided in Supplementary Materials. Availability and implementation https://jaspershen.github.io/metID. Supplementary information Supplementary data are available at Bioinformatics online.
تدمد: 1367-4811
1367-4803
DOI: 10.1093/bioinformatics/btab583
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f871813d0ce5854d6197757da43f9ef7
https://doi.org/10.1093/bioinformatics/btab583
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....f871813d0ce5854d6197757da43f9ef7
قاعدة البيانات: OpenAIRE
الوصف
تدمد:13674811
13674803
DOI:10.1093/bioinformatics/btab583