Bubble size prediction in co-flowing streams
العنوان: | Bubble size prediction in co-flowing streams |
---|---|
المؤلفون: | W. van Hoeve, B. Dollet, J. M. Gordillo, M. Versluis, L. van Wijngaarden, D. Lohse |
المساهمون: | Faculty of Science and Technology, Physics of Fluids, University of Twente, Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Institute for Biomedical Technology (MIRA), University of Twente [Netherlands], Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS) |
المصدر: | Europhysics letters, 94(6):64001. Institute of Physics (IOP) EPL-Europhysics Letters EPL-Europhysics Letters, 2011, 94 (6), pp.64001. ⟨10.1209/0295-5075/94/64001⟩ EPL-Europhysics Letters, European Physical Society/EDP Sciences/Società Italiana di Fisica/IOP Publishing, 2011, 94 (6), pp.64001. ⟨10.1209/0295-5075/94/64001⟩ |
سنة النشر: | 2011 |
مصطلحات موضوعية: | Physics, [PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn], Jet (fluid), Bubble, Fluid Dynamics (physics.flu-dyn), General Physics and Astronomy, Reynolds number, FOS: Physical sciences, Physics - Fluid Dynamics, 02 engineering and technology, Radius, Type (model theory), 021001 nanoscience & nanotechnology, 01 natural sciences, Volumetric flow rate, Physics::Fluid Dynamics, Viscosity, symbols.namesake, 0103 physical sciences, symbols, Liquid bubble, Atomic physics, 010306 general physics, 0210 nano-technology |
الوصف: | In this paper, the size of bubbles formed through the breakup of a gaseous jet in a co-axial microfluidic device is derived. The gaseous jet surrounded by a co-flowing liquid stream breaks up into monodisperse microbubbles and the size of the bubbles is determined by the radius of the inner gas jet and the bubble formation frequency. We obtain the radius of the gas jet by solving the Navier-Stokes equations for low Reynolds number flows and by minimization of the dissipation energy. The prediction of the bubble size is based on the system's control parameters only, i.e. the inner gas flow rate $Q_i$, the outer liquid flow rate $Q_o$, and the tube radius $R$. For a very low gas-to-liquid flow rate ratio ($Q_i / Q_o \rightarrow 0$) the bubble radius scales as $r_b / R \propto \sqrt{Q_i / Q_o}$, independently of the inner to outer viscosity ratio $\eta_i/\eta_o$ and of the type of the velocity profile in the gas, which can be either flat or parabolic, depending on whether high-molecular-weight surfactants cover the gas-liquid interface or not. However, in the case in which the gas velocity profiles are parabolic and the viscosity ratio is sufficiently low, i.e. $\eta_i/\eta_o \ll 1$, the bubble diameter scales as $r_b \propto (Q_i/Q_o)^\beta$, with $\beta$ smaller than 1/2. |
اللغة: | English |
تدمد: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/94/64001⟩ |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f600a8a95f6bad86112dcf52186d4cc0 https://research.utwente.nl/en/publications/827794fe-73be-4d6e-8c49-f2d7d5d9d402 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....f600a8a95f6bad86112dcf52186d4cc0 |
قاعدة البيانات: | OpenAIRE |
تدمد: | 02955075 12864854 |
---|---|
DOI: | 10.1209/0295-5075/94/64001⟩ |