Gaussian heat kernel bounds through elliptic Moser iteration

التفاصيل البيبلوغرافية
العنوان: Gaussian heat kernel bounds through elliptic Moser iteration
المؤلفون: Thierry Coulhon, Frédéric Bernicot, Dorothee Frey
المساهمون: Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Mathematical Sciences Institute (MSI), Australian National University (ANU), ANR-12-BS01-0013,HAB,Aux frontières de l'analyse Harmonique(2012), ANR-11-JS01-0001,AFoMEN,Analyse de Fourier Multilineaire et EDPs Nonlineaires(2011)
المصدر: Journal de Mathématiques Pures et Appliquées
Journal de Mathématiques Pures et Appliquées, Elsevier, 2016, 106 (6), pp.995-1037
سنة النشر: 2014
مصطلحات موضوعية: Mathematics - Differential Geometry, Pure mathematics, Hölder regularity of the heat semigroup, General Mathematics, gradient estimates, Characterization (mathematics), Space (mathematics), [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA], 01 natural sciences, Measure (mathematics), Riesz transform, Mathematics - Analysis of PDEs, 58J35, 42B20, 0103 physical sciences, FOS: Mathematics, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], Direct proof, 0101 mathematics, Heat kernel, Mathematics, Heat kernel lower bounds, Semigroup, Applied Mathematics, Poincar e inequalities, 010102 general mathematics, Functional Analysis (math.FA), De Giorgi property, Mathematics - Functional Analysis, Differential Geometry (math.DG), Harmonic function, 58J35, 42B20, [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG], 010307 mathematical physics, Analysis of PDEs (math.AP)
الوصف: On a doubling metric measure space endowed with a "carr\'e du champ", we consider $L^p$ estimates $(G_p)$ of the gradient of the heat semigroup and scale-invariant $L^p$ Poincar\'e inequalities $(P_p)$. We show that the combination of $(G_p)$ and $(P_p)$ for $p\ge 2$ always implies two-sided Gaussian heat kernel bounds. The case $p=2$ is a famous theorem of Saloff-Coste, of which we give a shorter proof, without parabolic Moser iteration. We also give a more direct proof of the main result in \cite{HS}. This relies in particular on a new notion of $L^p$ H\"older regularity for a semigroup and on a characterization of $(P_2)$ in terms of harmonic functions.
Comment: v2: main result improved; slight reorganisation, title changed
اللغة: English
تدمد: 0021-7824
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f375da6a01645fd9ea7205ae36f704f5
http://arxiv.org/abs/1407.3906
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....f375da6a01645fd9ea7205ae36f704f5
قاعدة البيانات: OpenAIRE