Locally Nilpotent Derivations of Graded Integral Domains and Cylindricity

التفاصيل البيبلوغرافية
العنوان: Locally Nilpotent Derivations of Graded Integral Domains and Cylindricity
المؤلفون: Michael Chitayat, Daniel Daigle
المصدر: Transformation Groups.
بيانات النشر: Springer Science and Business Media LLC, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Mathematics - Algebraic Geometry, Algebra and Number Theory, FOS: Mathematics, Geometry and Topology, Commutative Algebra (math.AC), Mathematics - Commutative Algebra, Primary: 13N15, 14R20. Secondary: 14C20, 14R05, 14R25, Algebraic Geometry (math.AG)
الوصف: Let B be a commutative $\mathbb{Z}$-graded domain of characteristic zero. An element f of B is said to be cylindrical if it is nonzero, homogeneous of nonzero degree, and such that $B_{(f)}$ is a polynomial ring in one variable over a subring. We study the relation between the existence of a cylindrical element of B and the existence of a nonzero locally nilpotent derivation of B. Also, given d > 0, we give sufficient conditions that guarantee that every derivation of $B^{(d)} = \oplus_i B_{di}$ can be extended to a derivation of B. We generalize some results of Kishimoto, Prokhorov and Zaidenberg that relate the cylindricity of a polarized projective variety (Y,H) to the existence of a nontrivial G_a-action on the affine cone over (Y,H).
27 pages
تدمد: 1531-586X
1083-4362
DOI: 10.1007/s00031-022-09753-5
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f29d99bac9eed8debe78f3f554f97ba5
https://doi.org/10.1007/s00031-022-09753-5
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....f29d99bac9eed8debe78f3f554f97ba5
قاعدة البيانات: OpenAIRE
الوصف
تدمد:1531586X
10834362
DOI:10.1007/s00031-022-09753-5