Time discretization of nonlinear Cauchy problems applying to mixed hyperbolic-parabolic equations

التفاصيل البيبلوغرافية
العنوان: Time discretization of nonlinear Cauchy problems applying to mixed hyperbolic-parabolic equations
المؤلفون: Angelo Favini, Pierluigi Colli, Porta San Donato
المصدر: International Journal of Mathematics and Mathematical Sciences, Vol 19, Iss 3, Pp 481-494 (1996)
بيانات النشر: Hindawi Limited, 1996.
سنة النشر: 1996
مصطلحات موضوعية: Cauchy problem, convergence and error estimate, nonlinear second-order evolution equations, Dual space, lcsh:Mathematics, Mathematical analysis, Hilbert space, State (functional analysis), lcsh:QA1-939, Strongly monotone, Operator space, symbols.namesake, Pseudo-monotone operator, Mathematics (miscellaneous), symbols, Initial value problem, Uniqueness, existence and uniqueness, time discretization, Mathematics
الوصف: In this paper we deal with the equationL(d2u/dt2)+B(du/dt)+Au∋f, whereLandAare linear positive selfadjoint operators in a Hilbert spaceHand from a Hilbert spaceV⊂Hto its dual spaceV′, respectively, andBis a maximal monotone operator fromVtoV′. By assuming some coerciveness onL+BandA, we state the existence and uniqueness of the solution for the corresponding initial value problem. An approximation via finite differences in time is provided and convergence results along with error estimates are presented.
وصف الملف: text/xhtml
تدمد: 1687-0425
0161-1712
DOI: 10.1155/s0161171296000683
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f18e68f6e0ec90ad2d2bc6f8471a1372
https://doi.org/10.1155/s0161171296000683
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....f18e68f6e0ec90ad2d2bc6f8471a1372
قاعدة البيانات: OpenAIRE
الوصف
تدمد:16870425
01611712
DOI:10.1155/s0161171296000683