Time discretization of nonlinear Cauchy problems applying to mixed hyperbolic-parabolic equations
العنوان: | Time discretization of nonlinear Cauchy problems applying to mixed hyperbolic-parabolic equations |
---|---|
المؤلفون: | Angelo Favini, Pierluigi Colli, Porta San Donato |
المصدر: | International Journal of Mathematics and Mathematical Sciences, Vol 19, Iss 3, Pp 481-494 (1996) |
بيانات النشر: | Hindawi Limited, 1996. |
سنة النشر: | 1996 |
مصطلحات موضوعية: | Cauchy problem, convergence and error estimate, nonlinear second-order evolution equations, Dual space, lcsh:Mathematics, Mathematical analysis, Hilbert space, State (functional analysis), lcsh:QA1-939, Strongly monotone, Operator space, symbols.namesake, Pseudo-monotone operator, Mathematics (miscellaneous), symbols, Initial value problem, Uniqueness, existence and uniqueness, time discretization, Mathematics |
الوصف: | In this paper we deal with the equationL(d2u/dt2)+B(du/dt)+Au∋f, whereLandAare linear positive selfadjoint operators in a Hilbert spaceHand from a Hilbert spaceV⊂Hto its dual spaceV′, respectively, andBis a maximal monotone operator fromVtoV′. By assuming some coerciveness onL+BandA, we state the existence and uniqueness of the solution for the corresponding initial value problem. An approximation via finite differences in time is provided and convergence results along with error estimates are presented. |
وصف الملف: | text/xhtml |
تدمد: | 1687-0425 0161-1712 |
DOI: | 10.1155/s0161171296000683 |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f18e68f6e0ec90ad2d2bc6f8471a1372 https://doi.org/10.1155/s0161171296000683 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....f18e68f6e0ec90ad2d2bc6f8471a1372 |
قاعدة البيانات: | OpenAIRE |
تدمد: | 16870425 01611712 |
---|---|
DOI: | 10.1155/s0161171296000683 |