Regional variations in medical trainee diet and nutrition counseling competencies: Machine learning-augmented propensity score analysis of a prospective multi-site cohort study

التفاصيل البيبلوغرافية
العنوان: Regional variations in medical trainee diet and nutrition counseling competencies: Machine learning-augmented propensity score analysis of a prospective multi-site cohort study
المؤلفون: Alexandra Ngo, Dominique J. Monlezun, Deanna M. Hoelscher, C Mark Chassay, Justin Tran, Amber Dyer, Timothy S. Harlan, John W. McWhorter, Anish Patnaik, Avni Mody, Helen Burks, Laura J. Moore, Leah Sarris, Tu Dan Nguyen
المصدر: Med Sci Educ
سنة النشر: 2021
مصطلحات موضوعية: medicine.medical_specialty, business.industry, Public health, Nutrition Education, education, Medicine (miscellaneous), Disease, Machine learning, computer.software_genre, medicine.disease, Obesity, Education, Propensity score matching, medicine, Artificial intelligence, business, computer, Curriculum, Nutrition counseling, Cohort study, Original Research
الوصف: BACKGROUND: Medical professionals and students are inadequately trained to respond to rising global obesity and nutrition-related chronic disease epidemics, primarily focusing on cardiovascular disease. Yet, there are no multi-site studies testing evidence-based nutrition education for medical students in preventive cardiology, let alone establishing student dietary and competency patterns. METHODS: Cooking for Health Optimization with Patients (CHOP; NIH NCT03443635) was the first multi-national cohort study using hands-on cooking and nutrition education as preventive cardiology, monitoring and improving student diets and competencies in patient nutrition education. Propensity-score adjusted multivariable regression was augmented by 43 supervised machine learning algorithms to assess students outcomes from UT Health versus the remaining study sites. RESULTS: 3,248 medical trainees from 20 medical centers and colleges met study criteria from 1 August 2012 to 31 December 2017 with 60 (1.49%) being from UTHealth. Compared to the other study sites, trainees from UTHealth were more likely to consume vegetables daily (OR 1.82, 95%CI 1.04-3.17, p=0.035), strongly agree that nutrition assessment should be routine clinical practice (OR 2.43, 95%CI 1.45-4.05, p=0.001), and that providers can improve patients’ health with nutrition education (OR 1.73, 95%CI 1.03-2.91, p=0.038). UTHealth trainees were more likely to have mastered 12 of the 25 competency topics, with the top three being moderate alcohol intake (OR 1.74, 95%CI 0.97-3.11, p=0.062), dietary fats (OR 1.26, 95%CI 0.57-2.80, p=0.568), and calories (OR 1.26, 95%CI 0.70-2.28, p=0.446). CONCLUSION: This machine learning-augmented causal inference analysis provides the first results that compare medical students nationally in their diets and competencies in nutrition education, highlighting the results from UTHealth. Additional studies are required to determine which factors in the hands-on cooking and nutrition curriculum for UTHealth and other sites produce optimal student — and, eventually, preventive cardiology — outcomes when they educate patients in those classes.
تدمد: 2156-8650
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f00ea3bb3b1d82dbc687cf28f2706f4c
https://pubmed.ncbi.nlm.nih.gov/34457749
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....f00ea3bb3b1d82dbc687cf28f2706f4c
قاعدة البيانات: OpenAIRE