The graph neural networking challenge: a worldwide competition for education in AI/ML for networks

التفاصيل البيبلوغرافية
العنوان: The graph neural networking challenge: a worldwide competition for education in AI/ML for networks
المؤلفون: Peter Dorfinger, Henrike Wissing, François Taïani, Krzysztof Rusek, Albert López, Bo Wu, Johannes Wegener, Martin Happ, Matthias Herlich, Miquel Ferriol-Galmés, Jia Lei Du, Albert Cabellos-Aparicio, Stefan Venz, Pere Barlet-Ros, François Schnitzler, Paul Almasan, Christoph Neumann, Christian Maier, David Pujol-Perich, Shihan Xiao, Guillermo Bernárdez, Loïck Bonniot, José Suárez-Varela, Nick Vincent Hainke
المساهمون: Barcelona Neural Networking center [Barcelona], Universitat Politècnica de Catalunya [Barcelona] (UPC), AGH University of Science and Technology [Krakow, PL] (AGH UST), InterDigital R&D France, the World Is Distributed Exploring the tension between scale and coordination (WIDE), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SYSTÈMES LARGE ÉCHELLE (IRISA-D1), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Universität Salzburg, Fraunhofer Heinrich-Hertz-Institut [Berlin] (Fraunhofer HHI), Huawei Technologies Co., Ltd [Shenzhen], Universitat Politècnica de Catalunya [Barcelona], Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors, Universitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla, Publica
المصدر: Computer Communication Review
Computer Communication Review, 2021, 51 (3), pp.9-16. ⟨10.1145/3477482.3477485⟩
Computer Communication Review, Association for Computing Machinery, 2021, 51 (3), pp.9-16. ⟨10.1145/3477482.3477485⟩
Web of Science
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
بيانات النشر: HAL CCSD, 2021.
سنة النشر: 2021
مصطلحات موضوعية: FOS: Computer and information sciences, Informal education, Computer Science - Machine Learning, Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], Machine Learning challenge, Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors [Àrees temàtiques de la UPC], Computer Science - Artificial Intelligence, Computer Networks and Communications, Computer science, Control (management), Network AI, 02 engineering and technology, AI for Computer Networks, Field (computer science), Machine Learning (cs.LG), Computer Science - Networking and Internet Architecture, Competition (economics), Computing methodologies → Artificial intelligence, 020204 information systems, Aprenentatge automàtic, Machine learning, 0202 electrical engineering, electronic engineering, information engineering, Social and professional topics → Computer science education, Graph Neural Networks, Set (psychology), Computer networks, Networking and Internet Architecture (cs.NI), Non-Formal Education, Artificial neural network, Networks → Network performance evaluation, Computer Science - General Literature, General Literature (cs.GL), 020206 networking & telecommunications, Data science, Graph neural networks, Artificial Intelligence (cs.AI), Graph (abstract data type), [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Ordinadors, Xarxes d', Software, 5G
الوصف: During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge", an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020". We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic. This work has received funding from the European Union’s H2020 research and innovation programme within the framework of the NGI-POINTER Project funded under grant agreement No. 871528. This paper reflects only the authors’ view; the European Commission is not responsible for any use that may be made of the information it contains. This work was also supported by the Spanish MINECO under contract TEC2017-90034-C2-1-R (ALLIANCE), the Catalan Institution for Research and Advanced Studies (ICREA), and by FI-AGAUR grant by the Catalan Government. Salzburg Research is grateful for the support by the WISS 2025 (Science and Innovation Strategy Salzburg 2025) project ”IDALab Salzburg” (20204-WISS/225/197-2019 and 20102-F1901166-KZP) and the 5G-AI-MLab by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) and the Austrian state Salzburg. Peer Reviewed Article escrit per 24 autors/autores: José Suárez-Varela (1), Miquel Ferriol-Galmés (1), Albert López (1), Paul Almasan (1), Guillermo Bernárdez (1), David Pujol-Perich (1), Krzysztof Rusek (1,2), Loïck Bonniot (3, 4), Christoph Neumann (3), François Schnitzler (3), François Taïani (4), Martin Happ (5, 6), Christian Maier (5), Jia Lei Du (5), Matthias Herlich (5), Peter Dorfinger (5), Nick Vincent Hainke (7), Stefan Venz (7), Johannes Wegener (7), Henrike Wissing (7), Bo Wu (8), Shihan Xiao (8), Pere Barlet-Ros (1), Albert Cabellos-Aparicio (1). 1- Barcelona Neural Networking center, Universitat Politècnica de Catalunya, Spain. 2- AGH University of Science and Technology, Department of Telecommunications, Poland. 3- InterDigital, France. 4- Univ. Rennes, Inria, CNRS, IRISA, France. 5- Salzburg Research Forschungsgesellschaft mbH, Austria. 6- IDA Lab, University of Salzburg, Austria. 7- Fraunhofer HHI, Germany. 8- Network Technology Lab., Huawei Technologies Co., Ltd., China.
وصف الملف: application/pdf
اللغة: English
تدمد: 0146-4833
1943-5819
DOI: 10.1145/3477482.3477485⟩
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee89dcf4f9739b68ff8cf97b019c753f
https://inria.hal.science/hal-03346696/file/paper.pdf
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....ee89dcf4f9739b68ff8cf97b019c753f
قاعدة البيانات: OpenAIRE
الوصف
تدمد:01464833
19435819
DOI:10.1145/3477482.3477485⟩