Quantum non-demolition measurement of an electron spin qubit

التفاصيل البيبلوغرافية
العنوان: Quantum non-demolition measurement of an electron spin qubit
المؤلفون: Tomohiro Otsuka, Giles Allison, Matthieu R. Delbecq, Kento Kawasaki, Daniel Loss, Andreas D. Wieck, Jun Yoneda, Arne Ludwig, Peter Stano, Kenta Takeda, Seigo Tarucha, Akito Noiri, Takashi Nakajima, Shinichi Amaha
المساهمون: School of Humanities [Univ of Toyama], University of Toyama, Physique Mésoscopique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Ruhr University Bochum (RUB), Lehrstuhl für Angewandte Festkörperphysik, Department of Physics, University of Basel (Unibas), Institute for Solid State Physics [Tokyo] (ISSP), The University of Tokyo (UTokyo), Department of linguistic [Toyama], Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), The University of Tokyo
المصدر: Nature Nanotechnology
Nature Nanotechnology, Nature Publishing Group, 2019, 14 (6), pp.555-560. ⟨10.1038/s41565-019-0426-x⟩
بيانات النشر: HAL CCSD, 2019.
سنة النشر: 2019
مصطلحات موضوعية: Dephasing, Biomedical Engineering, FOS: Physical sciences, Bioengineering, 02 engineering and technology, 010402 general chemistry, 01 natural sciences, [PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph], Quantum state, Quantum error correction, Quantum mechanics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), General Materials Science, Electrical and Electronic Engineering, Spin (physics), Quantum, ComputingMilieux_MISCELLANEOUS, [PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall], Physics, Quantum Physics, Condensed Matter - Mesoscale and Nanoscale Physics, Observable, 021001 nanoscience & nanotechnology, Condensed Matter Physics, Atomic and Molecular Physics, and Optics, 0104 chemical sciences, Quantum dot, Qubit, Quantum Physics (quant-ph), 0210 nano-technology
الوصف: Measurement of quantum systems inevitably involves disturbance in various forms. Within the limits imposed by quantum mechanics, however, one can design an "ideal" projective measurement that does not introduce a back action on the measured observable, known as a quantum nondemolition (QND) measurement. Here we demonstrate an all-electrical QND measurement of a single electron spin in a gate-defined quantum dot via an exchange-coupled ancilla qubit. The ancilla qubit, encoded in the singlet-triplet two-electron subspace, is entangled with the single spin and subsequently read out in a single shot projective measurement at a rate two orders of magnitude faster than the spin relaxation. The QND nature of the measurement protocol is evidenced by observing a monotonic increase of the readout fidelity over one hundred repetitive measurements against arbitrary input states. We extract information from the measurement record using the method of optimal inference, which is tolerant to the presence of the relaxation and dephasing. The QND measurement allows us to observe spontaneous spin flips (quantum jumps) in an isolated system with small disturbance. Combined with the high-fidelity control of spin qubits, these results pave the way for various measurement-based quantum state manipulations including quantum error correction protocols.
Comment: This is a pre-print of an article published in Nature Nanotechnology. The final authenticated version is available online at: https://doi.org/10.1038/s41565-019-0426-x
اللغة: English
تدمد: 1748-3387
1748-3395
DOI: 10.1038/s41565-019-0426-x⟩
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0dd6b602717a2f5a302c8cdfb711c61
https://hal.archives-ouvertes.fr/hal-02318722
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....e0dd6b602717a2f5a302c8cdfb711c61
قاعدة البيانات: OpenAIRE
الوصف
تدمد:17483387
17483395
DOI:10.1038/s41565-019-0426-x⟩