Meta-Parameter Free Unsupervised Sparse Feature Learning

التفاصيل البيبلوغرافية
العنوان: Meta-Parameter Free Unsupervised Sparse Feature Learning
المؤلفون: Petia Radeva, Carlo Gatta, Adriana Romero
المصدر: IEEE Transactions on Pattern Analysis and Machine Intelligence. 37:1716-1722
بيانات النشر: Institute of Electrical and Electronics Engineers (IEEE), 2015.
سنة النشر: 2015
مصطلحات موضوعية: Computer Science::Machine Learning, Wake-sleep algorithm, business.industry, Computer science, Applied Mathematics, Competitive learning, Pattern recognition, Semi-supervised learning, Machine learning, computer.software_genre, Statistics::Machine Learning, Computational Theory and Mathematics, Discriminative model, Artificial Intelligence, Feature (computer vision), Encoding (memory), Unsupervised learning, Computer Vision and Pattern Recognition, Artificial intelligence, business, computer, Feature learning, Software
الوصف: We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL-10 and UCMerced show that the method achieves the state-of-the-art performance, providing discriminative features that generalize well.
تدمد: 2160-9292
0162-8828
DOI: 10.1109/tpami.2014.2366129
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de4f28124909658d3c82d7902e8afd4d
https://doi.org/10.1109/tpami.2014.2366129
Rights: CLOSED
رقم الانضمام: edsair.doi.dedup.....de4f28124909658d3c82d7902e8afd4d
قاعدة البيانات: OpenAIRE
ResultId 1
Header edsair
OpenAIRE
edsair.doi.dedup.....de4f28124909658d3c82d7902e8afd4d
814
3

unknown
814.240539550781
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....de4f28124909658d3c82d7902e8afd4d&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de4f28124909658d3c82d7902e8afd4d# [Name] => EDS - OpenAIRE [Category] => fullText [Text] => View record in OpenAIRE [MouseOverText] => View record in OpenAIRE ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Meta-Parameter Free Unsupervised Sparse Feature Learning )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Petia+Radeva%22">Petia Radeva</searchLink><br /><searchLink fieldCode="AR" term="%22Carlo+Gatta%22">Carlo Gatta</searchLink><br /><searchLink fieldCode="AR" term="%22Adriana+Romero%22">Adriana Romero</searchLink> )
Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i>. 37:1716-1722 )
Array ( [Name] => Publisher [Label] => Publisher Information [Group] => PubInfo [Data] => Institute of Electrical and Electronics Engineers (IEEE), 2015. )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2015 )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Computer+Science%3A%3AMachine+Learning%22">Computer Science::Machine Learning</searchLink><br /><searchLink fieldCode="DE" term="%22Wake-sleep+algorithm%22">Wake-sleep algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22business%2Eindustry%22">business.industry</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+science%22">Computer science</searchLink><br /><searchLink fieldCode="DE" term="%22Applied+Mathematics%22">Applied Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Competitive+learning%22">Competitive learning</searchLink><br /><searchLink fieldCode="DE" term="%22Pattern+recognition%22">Pattern recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Semi-supervised+learning%22">Semi-supervised learning</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+learning%22">Machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22computer%2Esoftware%5Fgenre%22">computer.software_genre</searchLink><br /><searchLink fieldCode="DE" term="%22Statistics%3A%3AMachine+Learning%22">Statistics::Machine Learning</searchLink><br /><searchLink fieldCode="DE" term="%22Computational+Theory+and+Mathematics%22">Computational Theory and Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Discriminative+model%22">Discriminative model</searchLink><br /><searchLink fieldCode="DE" term="%22Artificial+Intelligence%22">Artificial Intelligence</searchLink><br /><searchLink fieldCode="DE" term="%22Feature+%28computer+vision%29%22">Feature (computer vision)</searchLink><br /><searchLink fieldCode="DE" term="%22Encoding+%28memory%29%22">Encoding (memory)</searchLink><br /><searchLink fieldCode="DE" term="%22Unsupervised+learning%22">Unsupervised learning</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Vision+and+Pattern+Recognition%22">Computer Vision and Pattern Recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Artificial+intelligence%22">Artificial intelligence</searchLink><br /><searchLink fieldCode="DE" term="%22business%22">business</searchLink><br /><searchLink fieldCode="DE" term="%22computer%22">computer</searchLink><br /><searchLink fieldCode="DE" term="%22Feature+learning%22">Feature learning</searchLink><br /><searchLink fieldCode="DE" term="%22Software%22">Software</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL-10 and UCMerced show that the method achieves the state-of-the-art performance, providing discriminative features that generalize well. )
Array ( [Name] => ISSN [Label] => ISSN [Group] => ISSN [Data] => 2160-9292<br />0162-8828 )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.1109/tpami.2014.2366129 )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de4f28124909658d3c82d7902e8afd4d" linkWindow="_blank">https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de4f28124909658d3c82d7902e8afd4d</link><br /><link linkTarget="URL" linkTerm="https://doi.org/10.1109/tpami.2014.2366129" linkWindow="_blank">https://doi.org/10.1109/tpami.2014.2366129</link> )
Array ( [Name] => Copyright [Label] => Rights [Group] => Cpyrght [Data] => CLOSED )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsair.doi.dedup.....de4f28124909658d3c82d7902e8afd4d )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.1109/tpami.2014.2366129 ) ) [Languages] => Array ( [0] => Array ( [Text] => Undetermined ) ) [PhysicalDescription] => Array ( [Pagination] => Array ( [PageCount] => 7 [StartPage] => 1716 ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Computer Science::Machine Learning [Type] => general ) [1] => Array ( [SubjectFull] => Wake-sleep algorithm [Type] => general ) [2] => Array ( [SubjectFull] => business.industry [Type] => general ) [3] => Array ( [SubjectFull] => Computer science [Type] => general ) [4] => Array ( [SubjectFull] => Applied Mathematics [Type] => general ) [5] => Array ( [SubjectFull] => Competitive learning [Type] => general ) [6] => Array ( [SubjectFull] => Pattern recognition [Type] => general ) [7] => Array ( [SubjectFull] => Semi-supervised learning [Type] => general ) [8] => Array ( [SubjectFull] => Machine learning [Type] => general ) [9] => Array ( [SubjectFull] => computer.software_genre [Type] => general ) [10] => Array ( [SubjectFull] => Statistics::Machine Learning [Type] => general ) [11] => Array ( [SubjectFull] => Computational Theory and Mathematics [Type] => general ) [12] => Array ( [SubjectFull] => Discriminative model [Type] => general ) [13] => Array ( [SubjectFull] => Artificial Intelligence [Type] => general ) [14] => Array ( [SubjectFull] => Feature (computer vision) [Type] => general ) [15] => Array ( [SubjectFull] => Encoding (memory) [Type] => general ) [16] => Array ( [SubjectFull] => Unsupervised learning [Type] => general ) [17] => Array ( [SubjectFull] => Computer Vision and Pattern Recognition [Type] => general ) [18] => Array ( [SubjectFull] => Artificial intelligence [Type] => general ) [19] => Array ( [SubjectFull] => business [Type] => general ) [20] => Array ( [SubjectFull] => computer [Type] => general ) [21] => Array ( [SubjectFull] => Feature learning [Type] => general ) [22] => Array ( [SubjectFull] => Software [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Meta-Parameter Free Unsupervised Sparse Feature Learning [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Petia Radeva ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Carlo Gatta ) ) ) [2] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Adriana Romero ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 01 [M] => 08 [Type] => published [Y] => 2015 ) ) [Identifiers] => Array ( [0] => Array ( [Type] => issn-print [Value] => 21609292 ) [1] => Array ( [Type] => issn-print [Value] => 01628828 ) [2] => Array ( [Type] => issn-locals [Value] => edsair ) ) [Numbering] => Array ( [0] => Array ( [Type] => volume [Value] => 37 ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => IEEE Transactions on Pattern Analysis and Machine Intelligence [Type] => main ) ) ) ) ) ) )
IllustrationInfo