Meta-Parameter Free Unsupervised Sparse Feature Learning

التفاصيل البيبلوغرافية
العنوان: Meta-Parameter Free Unsupervised Sparse Feature Learning
المؤلفون: Petia Radeva, Carlo Gatta, Adriana Romero
المصدر: IEEE Transactions on Pattern Analysis and Machine Intelligence. 37:1716-1722
بيانات النشر: Institute of Electrical and Electronics Engineers (IEEE), 2015.
سنة النشر: 2015
مصطلحات موضوعية: Computer Science::Machine Learning, Wake-sleep algorithm, business.industry, Computer science, Applied Mathematics, Competitive learning, Pattern recognition, Semi-supervised learning, Machine learning, computer.software_genre, Statistics::Machine Learning, Computational Theory and Mathematics, Discriminative model, Artificial Intelligence, Feature (computer vision), Encoding (memory), Unsupervised learning, Computer Vision and Pattern Recognition, Artificial intelligence, business, computer, Feature learning, Software
الوصف: We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL-10 and UCMerced show that the method achieves the state-of-the-art performance, providing discriminative features that generalize well.
تدمد: 2160-9292
0162-8828
DOI: 10.1109/tpami.2014.2366129
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de4f28124909658d3c82d7902e8afd4d
https://doi.org/10.1109/tpami.2014.2366129
Rights: CLOSED
رقم الانضمام: edsair.doi.dedup.....de4f28124909658d3c82d7902e8afd4d
قاعدة البيانات: OpenAIRE
الوصف
تدمد:21609292
01628828
DOI:10.1109/tpami.2014.2366129