Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

التفاصيل البيبلوغرافية
العنوان: Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses
المؤلفون: Fenglin Wang, Nick Hartmann, Jie Yang, Renkai Li, Sharon Vetter, Xiaozhe Shen, Theodore Vecchione, Jeff Corbett, Joseph Robinson, Ryan Coffee, Matthew S. Robinson, C. Hast, Igor Makasyuk, Martin Centurion, Kelly J. Gaffney, Charles Yoneda, Xijie Wang, Keith Jobe, Markus Guehr, Alan Fry, Alexander H. Reid, Tais Gorkhover, Stephen Weathersby
المصدر: Nature Communications
Nature Communications, Vol 7, Iss 1, Pp 1-9 (2016)
سنة النشر: 2015
مصطلحات موضوعية: Diffraction, Physics, Multidisciplinary, Science, Wave packet, Institut für Physik und Astronomie, General Physics and Astronomy, 02 engineering and technology, General Chemistry, Electron, 021001 nanoscience & nanotechnology, 01 natural sciences, General Biochemistry, Genetics and Molecular Biology, Article, Molecular geometry, Electron diffraction, Temporal resolution, 0103 physical sciences, Femtosecond, Molecule, Atomic physics, 010306 general physics, 0210 nano-technology
الوصف: Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.
Imaging changes in molecular geometries with sufficient temporal and spatial resolution to image nuclei is a critical challenge in the chemical sciences. Here the authors report gasphase Megaelectronvolt electron diffraction with 100 fs temporal resolution and subAngstrom spatial resolution.
تدمد: 2041-1723
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db0551078ad22569ceefc357f649657e
https://pubmed.ncbi.nlm.nih.gov/27046298
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....db0551078ad22569ceefc357f649657e
قاعدة البيانات: OpenAIRE