Lozenge tilings and the Gaussian free field on a cylinder

التفاصيل البيبلوغرافية
العنوان: Lozenge tilings and the Gaussian free field on a cylinder
المؤلفون: Andrew Ahn, Marianna Russkikh, Roger Van Peski
بيانات النشر: arXiv, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Probability (math.PR), FOS: Mathematics, Mathematics - Combinatorics, FOS: Physical sciences, Statistical and Nonlinear Physics, Mathematical Physics (math-ph), Combinatorics (math.CO), Mathematics - Probability, Mathematical Physics
الوصف: We use the periodic Schur process, introduced in arXiv:math/0601019v1, to study the random height function of lozenge tilings (equivalently, dimers) on an infinite cylinder distributed under two variants of the $q^{\operatorname{vol}}$ measure. Under the first variant, corresponding to random cylindric partitions, the height function converges to a deterministic limit shape and fluctuations around it are given by the Gaussian free field in the conformal structure predicted by the Kenyon-Okounkov conjecture. Under the second variant, corresponding to an unrestricted dimer model on the cylinder, the fluctuations are given by the same Gaussian free field with an additional discrete Gaussian shift component. Fluctuations of the latter type have been previously conjectured for dimer models on planar domains with holes.
Comment: 43 pages, 6 figures. Journal version, to appear in Communications in Mathematical Physics
DOI: 10.48550/arxiv.2105.00551
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0d14fa49b8c5bc8ccddfa2db07dbf86
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....d0d14fa49b8c5bc8ccddfa2db07dbf86
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.48550/arxiv.2105.00551