Data-driven observer design for an inertia wheel pendulum with static friction

التفاصيل البيبلوغرافية
العنوان: Data-driven observer design for an inertia wheel pendulum with static friction
المؤلفون: L. Ecker, M. Schöberl
بيانات النشر: arXiv, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Control and Systems Engineering, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
الوصف: An indirect data-driven state observer design approach for the inertia wheel pendulum considering static friction of the actuated inertia disc is presented. The frictional forces occurring in a real laboratory setup are characterized by the Stribeck effect as well as the transition between two different dynamic behaviors, sticking and non-sticking. These switching nonlinear dynamics are identified with various machine learning methodologies in a data-driven manner, i.e., the unsupervised separation and feature clustering of measured state trajectories into two dynamic classes, and the supervised classification of a state-dependent switching condition. The identified system with the interior switching-structure of two dynamics is combined with a moving horizon estimator.
DOI: 10.48550/arxiv.2206.10266
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d008f176996155a4fe88447d35ac0b0b
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....d008f176996155a4fe88447d35ac0b0b
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.48550/arxiv.2206.10266