Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow
العنوان: | Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow |
---|---|
المؤلفون: | Marianne Astruc, Edith Peuvrel-Disdier, Sylvie Vervoort, Thierry Coupez, Patrick Navard, Hervé O. Nouatin, Yves De Puydt |
المساهمون: | Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) |
المصدر: | Rheologica Acta Rheologica Acta, Springer Verlag, 2003, 42 (5), pp.Pages 421-431. ⟨10.1007/s00397-003-0296-9⟩ |
بيانات النشر: | HAL CCSD, 2003. |
سنة النشر: | 2003 |
مصطلحات موضوعية: | 010407 polymers, Finite element method, Particle rotation, 02 engineering and technology, 01 natural sciences, Viscoelasticity, [SPI.MAT]Engineering Sciences [physics]/Materials, Physics::Fluid Dynamics, Newtonian fluid, Weissenberg number, General Materials Science, Chemistry, Rotation around a fixed axis, Mechanics, Vorticity, 021001 nanoscience & nanotechnology, Condensed Matter Physics, 0104 chemical sciences, Simple shear, Classical mechanics, Agglomerate, Erosion, Rheo-optics, Astrophysics::Earth and Planetary Astrophysics, 0210 nano-technology, Shear flow |
الوصف: | International audience; When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We > 0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid. |
اللغة: | English |
تدمد: | 0035-4511 1435-1528 |
DOI: | 10.1007/s00397-003-0296-9⟩ |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf7fe129dfea14486a6af63ee69c171c https://hal-mines-paristech.archives-ouvertes.fr/hal-00672001 |
Rights: | CLOSED |
رقم الانضمام: | edsair.doi.dedup.....cf7fe129dfea14486a6af63ee69c171c |
قاعدة البيانات: | OpenAIRE |
تدمد: | 00354511 14351528 |
---|---|
DOI: | 10.1007/s00397-003-0296-9⟩ |