Conditional Synthesis of Blood Glucose Profiles for T1D Patients Using Deep Generative Models

التفاصيل البيبلوغرافية
العنوان: Conditional Synthesis of Blood Glucose Profiles for T1D Patients Using Deep Generative Models
المؤلفون: Omer Mujahid, Ivan Contreras, Aleix Beneyto, Ignacio Conget, Marga Giménez, Josep Vehi
المساهمون: Agencia Estatal de Investigación
المصدر: Mathematics, 2022, vol. 10, núm. 20, p. 3741
Articles publicats (D-EEEiA)
DUGiDocs – Universitat de Girona
instname
Mathematics; Volume 10; Issue 20; Pages: 3741
بيانات النشر: MDPI (Multidisciplinary Digital Publishing Institute), 2022.
سنة النشر: 2022
مصطلحات موضوعية: Patient monitoring, Glucèmia -- Models matemàtics, Malingering, Diabetis, General Mathematics, Diabetes, Blood sugar -- Automatic control, deep generative models, conditional data synthesis, type 1 diabetes simulators, blood glucose data generation, Computer Science (miscellaneous), Glucèmia -- Control automàtic, Monitoratge de pacients, Simulació (Medicina), Intel·ligència artificial -- Aplicacions a la medicina, Blood sugar -- Mathematical models, Engineering (miscellaneous), Artificial intelligence -- Medical applications
الوصف: Mathematical modeling of the glucose–insulin system forms the core of simulators in the field of glucose metabolism. The complexity of human biological systems makes it a challenging task for the physiological models to encompass the entirety of such systems. Even though modern diabetes simulators perform a respectable task of simulating the glucose–insulin action, they are unable to estimate various phenomena affecting the glycemic profile of an individual such as glycemic disturbances and patient behavior. This research work presents a potential solution to this problem by proposing a method for the generation of blood glucose values conditioned on plasma insulin approximation of type 1 diabetes patients using a pixel-to-pixel generative adversarial network. Two type-1 diabetes cohorts comprising 29 and 6 patients, respectively, are used to train the generative model. This study shows that the generated blood glucose values are statistically similar to the real blood glucose values, mimicking the time-in-range results for each of the standard blood glucose ranges in type 1 diabetes management and obtaining similar means and variability outcomes. Furthermore, the causal relationship between the plasma insulin values and the generated blood glucose conforms to the same relationship observed in real patients. These results herald the aptness of deep generative models for the generation of virtual patients with diabetes This work was partially supported by the Spanish Ministry of Universities, the European Union through Next GenerationEU (Margarita Salas), the Spanish Ministry of Science and Innovation through grant PID2019107722RBC22/AEI/10.13039/501100011033, PID2020-117171RA-I00 funded by MCIN/AEI/10.13039/501100011033 and the Government of Catalonia under 2017SGR1551 and 2020 FI_B 00965
وصف الملف: application/pdf
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cbf4142560dfd123b231ace3a7f4673f
http://hdl.handle.net/10256/21872
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....cbf4142560dfd123b231ace3a7f4673f
قاعدة البيانات: OpenAIRE