Similarity Measures for the Detection of Clinical Conditions with Verbal Fluency Tasks

التفاصيل البيبلوغرافية
العنوان: Similarity Measures for the Detection of Clinical Conditions with Verbal Fluency Tasks
المؤلفون: Rodrigo Wilkens, Aline Villavicencio, Felipe Paula, Marco Idiart
المساهمون: UCL - SSH/ILC/PLIN - Pôle de recherche en linguistique
المصدر: NAACL-HLT (2)
بيانات النشر: Association for Computational Linguistics, 2018.
سنة النشر: 2018
مصطلحات موضوعية: business.industry, Computer science, 05 social sciences, Cognition, Gold standard (test), Word Association, computer.software_genre, Class (biology), 050105 experimental psychology, 03 medical and health sciences, 0302 clinical medicine, Semantic similarity, Taxonomy (general), Similarity (psychology), Verbal fluency test, 0501 psychology and cognitive sciences, Artificial intelligence, business, computer, 030217 neurology & neurosurgery, Natural language processing
الوصف: Semantic Verbal Fluency tests have been used in the detection of certain clinical conditions, like Dementia. In particular, given a sequence of semantically related words, a large num- ber of switches from one semantic class to an- other has been linked to clinical conditions. In this work, we investigate three similarity measures for automatically identify switches in semantic chains: semantic similarity from a manually constructed resource, and word as- sociation strength and semantic relatedness, both calculated from corpora. This informa- tion is used for building classifiers to distin- guish healthy controls from clinical cases with early stages of Alzheimer’s Disease and Mild Cognitive Deficits. The overall results indi- cate that for clinical conditions the classifiers that use these similarity measures outperform those that use a gold standard taxonomy
DOI: 10.18653/v1/n18-2037
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::caad5b4b0208107747b4b1ca6c890484
https://doi.org/10.18653/v1/n18-2037
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....caad5b4b0208107747b4b1ca6c890484
قاعدة البيانات: OpenAIRE