Convolutional Neural Networks: A Roundup and Benchmark of Their Pooling Layer Variants

التفاصيل البيبلوغرافية
العنوان: Convolutional Neural Networks: A Roundup and Benchmark of Their Pooling Layer Variants
المؤلفون: Nikolaos-Ioannis Galanis, Panagiotis Vafiadis, Kostas Gkouram Mirzaev, George Papakostas
المصدر: Algorithms; Volume 15; Issue 11; Pages: 391
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Computational Mathematics, Numerical Analysis, Computational Theory and Mathematics, Convolutional Neural Network (CNN), pooling, deep learning, computer vision, image analysis, benchmark, Theoretical Computer Science
الوصف: One of the essential layers in most Convolutional Neural Networks (CNNs) is the pooling layer, which is placed right after the convolution layer, effectively downsampling the input and reducing the computational power required. Different pooling methods have been proposed over the years, each with its own advantages and disadvantages, rendering them a better fit for different applications. We introduce a benchmark between many of these methods that highlights an optimal choice for different scenarios depending on each project’s individual needs, whether it is detail retention, performance, or overall computational speed requirements.
وصف الملف: application/pdf
تدمد: 1999-4893
DOI: 10.3390/a15110391
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c61dd26255145983593c30b4b8e1ad41
https://doi.org/10.3390/a15110391
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....c61dd26255145983593c30b4b8e1ad41
قاعدة البيانات: OpenAIRE
الوصف
تدمد:19994893
DOI:10.3390/a15110391