Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach

التفاصيل البيبلوغرافية
العنوان: Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach
المؤلفون: Cecilia Clementi, Klaus-Robert Müller, Stefan Chmiela, Frank Noé, Jiang Wang
المصدر: Journal of Chemical Physics
بيانات النشر: AIP Publishing, 2020.
سنة النشر: 2020
مصطلحات موضوعية: FOS: Computer and information sciences, Imagination, Computer science, media_common.quotation_subject, FOS: Physical sciences, General Physics and Astronomy, Machine Learning (stat.ML), Molecular dynamics, 010402 general chemistry, 01 natural sciences, Force field (chemistry), Search engine, Statistics - Machine Learning, Physics - Chemical Physics, Machine learning, 0103 physical sciences, Coarse-grain model, Coarse-grained force fields, Physical and Theoretical Chemistry, media_common, Chemical Physics (physics.chem-ph), 000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::000 Informatik, Informationswissenschaft, allgemeine Werke, Training set, Artificial neural networks, 010304 chemical physics, Artificial neural network, 500 Naturwissenschaften und Mathematik::530 Physik::530 Physik, Energy landscape, Computational Physics (physics.comp-ph), Computer simulation, Ensemble learning, 0104 chemical sciences, Free energy landscapes, Peptides, 500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften, Physics - Computational Physics, Algorithm
الوصف: Gradient-domain machine learning (GDML) is an accurate and efficient approach to learn a molecular potential and associated force field based on the kernel ridge regression algorithm. Here, we demonstrate its application to learn an effective coarse-grained (CG) model from all-atom simulation data in a sample efficient manner. The coarse-grained force field is learned by following the thermodynamic consistency principle, here by minimizing the error between the predicted coarse-grained force and the all-atom mean force in the coarse-grained coordinates. Solving this problem by GDML directly is impossible because coarse-graining requires averaging over many training data points, resulting in impractical memory requirements for storing the kernel matrices. In this work, we propose a data-efficient and memory-saving alternative. Using ensemble learning and stratified sampling, we propose a 2-layer training scheme that enables GDML to learn an effective coarse-grained model. We illustrate our method on a simple biomolecular system, alanine dipeptide, by reconstructing the free energy landscape of a coarse-grained variant of this molecule. Our novel GDML training scheme yields a smaller free energy error than neural networks when the training set is small, and a comparably high accuracy when the training set is sufficiently large.
14 pages, 6 figures
تدمد: 1089-7690
0021-9606
DOI: 10.1063/5.0007276
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bfbe4fe929d94571e7337e7da35b5416
https://doi.org/10.1063/5.0007276
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....bfbe4fe929d94571e7337e7da35b5416
قاعدة البيانات: OpenAIRE
الوصف
تدمد:10897690
00219606
DOI:10.1063/5.0007276