Hybridisable discontinuous Galerkin solution of geometrically parametrised Stokes flows
العنوان: | Hybridisable discontinuous Galerkin solution of geometrically parametrised Stokes flows |
---|---|
المؤلفون: | Matteo Giacomini, Antonio Huerta, Luca Borchini, Ruben Sevilla |
المساهمون: | Universitat Politècnica de Catalunya. Doctorat Erasmus Mundus en Simulació en Enginyeria i Desenvolupament de l'Emprenedoria, Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria |
المصدر: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
سنة النشر: | 2020 |
مصطلحات موضوعية: | FOS: Computer and information sciences, Computer science, Computational Mechanics, General Physics and Astronomy, FOS: Physical sciences, 010103 numerical & computational mathematics, Numerical analysis--Simulation methods, Investigació operativa, 01 natural sciences, Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], Set (abstract data type), Computational Engineering, Finance, and Science (cs.CE), 65M60, 76D07, 76M10, Discontinuous Galerkin method, Convergence (routing), 90 Operations research, mathematical programming::90B Operations research and management science [Classificació AMS], Decomposition (computer science), 65 Numerical analysis::65D Numerical approximation and computational geometry [Classificació AMS], FOS: Mathematics, Applied mathematics, Mathematics - Numerical Analysis, 0101 mathematics, Computer Science - Computational Engineering, Finance, and Science, Anàlisi numèrica, Mechanical Engineering, Reduced order model, Geometry parametrisation, Numerical Analysis (math.NA), Stokes flow, Proper generalised decomposition (PGD), Computational Physics (physics.comp-ph), Computer Science Applications, 010101 applied mathematics, Range (mathematics), Matemàtiques i estadística::Investigació operativa::Simulació [Àrees temàtiques de la UPC], Flow (mathematics), Mechanics of Materials, Hybridisable discontinuous Galerkin (HDG), Physics - Computational Physics, Numerical analysis |
الوصف: | This paper proposes a novel computational framework for the solution of geometrically parametrised flow problems governed by the Stokes equation. The proposed method uses a high-order hybridisable discontinuous Galerkin formulation and the proper generalised decomposition rationale to construct an off-line solution for a given set of geometric parameters. The generalised solution contains the information for all the geometric parameters in a user-defined range and it can be used to compute sensitivities. The proposed approach circumvents many of the weaknesses of other approaches based on the proper generalised decomposition for computing generalised solutions of geometrically parametrised problems. Four numerical examples show the optimal approximation properties of the proposed method and demonstrate its applicability in two and three dimensions. 51 pages, 30 figures |
وصف الملف: | application/pdf |
اللغة: | English |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bf5870493c2ad14f6c1309d865097cd2 http://arxiv.org/abs/2006.11846 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....bf5870493c2ad14f6c1309d865097cd2 |
قاعدة البيانات: | OpenAIRE |
الوصف غير متاح. |