REIDEMEISTER SPECTRA FOR SOLVMANIFOLDS IN LOW DIMENSIONS
العنوان: | REIDEMEISTER SPECTRA FOR SOLVMANIFOLDS IN LOW DIMENSIONS |
---|---|
المؤلفون: | Karel Dekimpe, Sam Tertooy, Iris Van den Bussche |
المصدر: | Topol. Methods Nonlinear Anal. 53, no. 2 (2019), 575-601 |
بيانات النشر: | JULIUSZ SCHAUDER CTR NONLINEAR STUDIES, 2019. |
سنة النشر: | 2019 |
مصطلحات موضوعية: | Pure mathematics, Endomorphism, 20F16 (Primary), 20F34 (Secondary), R-INFINITY PROPERTY, Group Theory (math.GR), TWISTED CONJUGACY CLASSES, 01 natural sciences, Spectrum (topology), Mathematics::Algebraic Topology, Spectral line, Conjugacy class, FOS: Mathematics, polycyclic group, Algebraic Topology (math.AT), Mathematics - Algebraic Topology, 0101 mathematics, Mathematics, Science & Technology, Group (mathematics), Applied Mathematics, 010102 general mathematics, solvmanifold, Twisted conjugacy, Reidemeister number, Automorphism, Mathematics::Geometric Topology, NIELSEN NUMBERS, Solvmanifold, Physical Sciences, Polycyclic group, Mathematics - Group Theory, Analysis |
الوصف: | The Reidemeister number of an endomorphism of a group is the number of twisted conjugacy classes determined by that endomorphism. The collection of all Reidemeister numbers of all automorphisms of a group $G$ is called the Reidemeister spectrum of $G$. In this paper, we determine the Reidemeister spectra of all fundamental groups of solvmanifolds up to Hirsch length 4. Comment: 21 pages |
وصف الملف: | application/pdf |
اللغة: | English |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb3a381f0505587d930c90cdab90854f https://lirias.kuleuven.be/handle/123456789/654106 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....bb3a381f0505587d930c90cdab90854f |
قاعدة البيانات: | OpenAIRE |
الوصف غير متاح. |