REIDEMEISTER SPECTRA FOR SOLVMANIFOLDS IN LOW DIMENSIONS

التفاصيل البيبلوغرافية
العنوان: REIDEMEISTER SPECTRA FOR SOLVMANIFOLDS IN LOW DIMENSIONS
المؤلفون: Karel Dekimpe, Sam Tertooy, Iris Van den Bussche
المصدر: Topol. Methods Nonlinear Anal. 53, no. 2 (2019), 575-601
بيانات النشر: JULIUSZ SCHAUDER CTR NONLINEAR STUDIES, 2019.
سنة النشر: 2019
مصطلحات موضوعية: Pure mathematics, Endomorphism, 20F16 (Primary), 20F34 (Secondary), R-INFINITY PROPERTY, Group Theory (math.GR), TWISTED CONJUGACY CLASSES, 01 natural sciences, Spectrum (topology), Mathematics::Algebraic Topology, Spectral line, Conjugacy class, FOS: Mathematics, polycyclic group, Algebraic Topology (math.AT), Mathematics - Algebraic Topology, 0101 mathematics, Mathematics, Science & Technology, Group (mathematics), Applied Mathematics, 010102 general mathematics, solvmanifold, Twisted conjugacy, Reidemeister number, Automorphism, Mathematics::Geometric Topology, NIELSEN NUMBERS, Solvmanifold, Physical Sciences, Polycyclic group, Mathematics - Group Theory, Analysis
الوصف: The Reidemeister number of an endomorphism of a group is the number of twisted conjugacy classes determined by that endomorphism. The collection of all Reidemeister numbers of all automorphisms of a group $G$ is called the Reidemeister spectrum of $G$. In this paper, we determine the Reidemeister spectra of all fundamental groups of solvmanifolds up to Hirsch length 4.
Comment: 21 pages
وصف الملف: application/pdf
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb3a381f0505587d930c90cdab90854f
https://lirias.kuleuven.be/handle/123456789/654106
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....bb3a381f0505587d930c90cdab90854f
قاعدة البيانات: OpenAIRE