Coherent long-time integration and Bayesian detection with Bernoulli track-before-detect

التفاصيل البيبلوغرافية
العنوان: Coherent long-time integration and Bayesian detection with Bernoulli track-before-detect
المؤلفون: Murat Üney, Paul Horridge, Bernard Mulgrew, Simon Maskell
بيانات النشر: Institute of Electrical and Electronics Engineers (IEEE), 2023.
سنة النشر: 2023
مصطلحات موضوعية: Applied Mathematics, Signal Processing, Electrical and Electronic Engineering
الوصف: We consider the problem of detecting small and manoeuvring objects with staring array radars. Coherent processing and long-time integration are key to addressing the undesirably low signal-to-noise/background conditions in this scenario and are complicated by the object manoeuvres. We propose a Bayesian solution that builds upon a Bernoulli state space model equipped with the likelihood of the radar data cubes through the radar ambiguity function. Likelihood evaluation in this model corresponds to coherent long-time integration. The proposed processing scheme consists of Bernoulli filtering within expectation maximisation iterations that aims at approximately finding complex reflection coefficients. We demonstrate the efficacy of our approach in a simulation example.
DOI: 10.36227/techrxiv.21747497.v2
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b8e6ea43770675f7df557f16b5f5b86e
https://doi.org/10.36227/techrxiv.21747497.v2
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....b8e6ea43770675f7df557f16b5f5b86e
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.36227/techrxiv.21747497.v2