Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection

التفاصيل البيبلوغرافية
العنوان: Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection
المؤلفون: Irini Moustaki, Giampiero Marra, Elena Geminiani
المصدر: Psychometrika
بيانات النشر: Springer Science and Business Media LLC, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Mathematical optimization, Theory and Methods, Psychometrics, Computer science, Degrees of freedom (statistics), Trust, 01 natural sciences, 010104 statistics & probability, Matrix (mathematics), 0504 sociology, HA Statistics, Computer Simulation, QA Mathematics, simple structure, Differentiable function, 0101 mathematics, penalized likelihood, General Psychology, Selection (genetic algorithm), Factor analysis, Likelihood Functions, Trust region, effective degrees of freedom, Applied Mathematics, Model selection, 05 social sciences, Process (computing), 050401 social sciences methods, measurement invariance, generalized information criterion, Algorithms
الوصف: Penalized factor analysis is an efficient technique that produces a factor loading matrix with many zero elements thanks to the introduction of sparsity-inducing penalties within the estimation process. However, sparse solutions and stable model selection procedures are only possible if the employed penalty is non-differentiable, which poses certain theoretical and computational challenges. This article proposes a general penalized likelihood-based estimation approach for single- and multiple-group factor analysis models. The framework builds upon differentiable approximations of non-differentiable penalties, a theoretically founded definition of degrees of freedom, and an algorithm with integrated automatic multiple tuning parameter selection that exploits second-order analytical derivative information. The proposed approach is evaluated in two simulation studies and illustrated using a real data set. All the necessary routines are integrated into the R package penfa. Supplementary Information The online version contains supplementary material available at 10.1007/s11336-021-09751-8.
وصف الملف: text
تدمد: 1860-0980
0033-3123
DOI: 10.1007/s11336-021-09751-8
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7693055f4bea0a18b5d1f2f6eae7244
https://doi.org/10.1007/s11336-021-09751-8
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....b7693055f4bea0a18b5d1f2f6eae7244
قاعدة البيانات: OpenAIRE
الوصف
تدمد:18600980
00333123
DOI:10.1007/s11336-021-09751-8