The least Euclidean distortion constant of a distance-regular graph

التفاصيل البيبلوغرافية
العنوان: The least Euclidean distortion constant of a distance-regular graph
المؤلفون: Sebastian M. Cioabă, Himanshu Gupta, Ferdinand Ihringer, Hirotake Kurihara
بيانات النشر: arXiv, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Applied Mathematics, FOS: Mathematics, Mathematics - Combinatorics, Discrete Mathematics and Combinatorics, Combinatorics (math.CO)
الوصف: In 2008, Vallentin made a conjecture involving the least distortion of an embedding of a distance-regular graph into Euclidean space. Vallentin's conjecture implies that for a least distortion Euclidean embedding of a distance-regular graph of diameter $d$, the most contracted pairs of vertices are those at distance $d$. In this paper, we confirm Vallentin's conjecture for several families of distance-regular graphs. We also provide counterexamples to this conjecture, where the largest contraction occurs between pairs of vertices at distance $d{-}1$. We suggest three alternative conjectures and prove them for several families of distance-regular graphs.
Comment: 19 pages
DOI: 10.48550/arxiv.2109.09708
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6e9af2b3b6a741929b84dd81048f771
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....b6e9af2b3b6a741929b84dd81048f771
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.48550/arxiv.2109.09708