A Supervised Learning Approach for Rainfall Detection From Underwater Noise Analysis

التفاصيل البيبلوغرافية
العنوان: A Supervised Learning Approach for Rainfall Detection From Underwater Noise Analysis
المؤلفون: Annalisa Barla, Sara Pensieri, Emanuele Fava, Andrea Trucco, Alessandro Verri, Roberto Bozzano
المصدر: IEEE Journal of Oceanic Engineering. 47:213-225
بيانات النشر: Institute of Electrical and Electronics Engineers (IEEE), 2022.
سنة النشر: 2022
مصطلحات موضوعية: Underwater noise, Acoustical meteorology, Computer science, business.industry, Rain, Mechanical Engineering, Supervised learning, Ocean Engineering, Acoustics, rainfall detection, Machine learning, computer.software_genre, supervised learning, Wind speed, underwater acoustics, machine learning, Marine vehicles, noise analysis, Sea measurements, Acoustic measurements, Artificial intelligence, Electrical and Electronic Engineering, business, computer
تدمد: 2373-7786
0364-9059
DOI: 10.1109/joe.2021.3091769
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abf4c50f6e6cf1af14d92eefa8816c5a
https://doi.org/10.1109/joe.2021.3091769
Rights: CLOSED
رقم الانضمام: edsair.doi.dedup.....abf4c50f6e6cf1af14d92eefa8816c5a
قاعدة البيانات: OpenAIRE
الوصف
تدمد:23737786
03649059
DOI:10.1109/joe.2021.3091769