Convergence of sampling Kantorovich operators in modular spaces with applications

التفاصيل البيبلوغرافية
العنوان: Convergence of sampling Kantorovich operators in modular spaces with applications
المؤلفون: Gianluca Vinti, Danilo Costarelli
المصدر: Rendiconti del Circolo Matematico di Palermo Series 2. 70:1115-1136
بيانات النشر: Springer Science and Business Media LLC, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Modular spaces, business.industry, General Mathematics, Approximation results, 010102 general mathematics, Sampling (statistics), Musielak–Orlicz spaces, Orlicz spaces, Modular design, 01 natural sciences, 010101 applied mathematics, Algebra, Sampling Kantorovich series, Convergence (routing), 0101 mathematics, Algebra over a field, business, Interpolation, Mathematics
الوصف: In the present paper we study the so-called sampling Kantorovich operators in the very general setting of modular spaces. Here, modular convergence theorems are proved under suitable assumptions, together with a modular inequality for the above operators. Further, we study applications of such approximation results in several concrete cases, such as Musielak–Orlicz and Orlicz spaces. As a consequence of these results we obtain convergence theorems in the classical and weighted versions of the $$L^p$$ L p and Zygmund (or interpolation) spaces. At the end of the paper examples of kernels for the above operators are presented.
تدمد: 1973-4409
0009-725X
DOI: 10.1007/s12215-020-00544-z
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aba162119f77a15ac3d0e8c5062dcc38
https://doi.org/10.1007/s12215-020-00544-z
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....aba162119f77a15ac3d0e8c5062dcc38
قاعدة البيانات: OpenAIRE
الوصف
تدمد:19734409
0009725X
DOI:10.1007/s12215-020-00544-z