A scalable approach to T2-MRI colon segmentation
العنوان: | A scalable approach to T2-MRI colon segmentation |
---|---|
المؤلفون: | Pere Brunet, Álvaro Bendezú, Isabel Navazo, Bernat Orellana, Fernando Azpiroz, Eva Monclús |
المساهمون: | Universitat Politècnica de Catalunya. Doctorat en Computació, Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. ViRVIG - Grup de Recerca en Visualització, Realitat Virtual i Interacció Gràfica |
المصدر: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
سنة النشر: | 2020 |
مصطلحات موضوعية: | Colon, Computer science, Medicina, Pipeline (computing), Health Informatics, Colon segmentation, Algorismes, Imatges -- Processament, 030218 nuclear medicine & medical imaging, 03 medical and health sciences, 0302 clinical medicine, Multigrid method, Informàtica::Aplicacions de la informàtica [Àrees temàtiques de la UPC], Image processing, Region of interest, Cut, ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION, Radiology, Nuclear Medicine and imaging, Segmentation, Ground truth, Radiological and Ultrasound Technology, business.industry, Grafs, Teoria de, Pattern recognition, Filter (signal processing), Magnetic Resonance Imaging, Computer Graphics and Computer-Aided Design, Graph theory, Tubularity, Imatges mèdiques, Scalability, Medicine, Graph-cuts, Computer Vision and Pattern Recognition, Artificial intelligence, business, 030217 neurology & neurosurgery, Algorithms, Imaging systems in medicine, MRI, Ciències de la salut [Àrees temàtiques de la UPC] |
الوصف: | The study of the colonic volume is a procedure with strong relevance to gastroenterologists. Depending on the clinical protocols, the volume analysis has to be performed on MRI of the unprepared colon without contrast administration. In such circumstances, existing measurement procedures are cumbersome and time-consuming for the specialists. The algorithm presented in this paper permits a quasi-automatic segmentation of the unprepared colon on T2-weighted MRI scans. The segmentation algorithm is organized as a three-stage pipeline. In the first stage, a custom tubularity filter is run to detect colon candidate areas. The specialists provide a list of points along the colon trajectory, which are combined with tubularity information to calculate an estimation of the colon medial path. In the second stage, we delimit the region of interest by applying custom segmentation algorithms to detect colon neighboring regions and the fat capsule containing abdominal organs. Finally, within the reduced search space, segmentation is performed via 3D graph-cuts in a three-stage multigrid approach. Our algorithm was tested on MRI abdominal scans, including different acquisition resolutions, and its results were compared to the colon ground truth segmentations provided by the specialists. The experiments proved the accuracy, efficiency, and usability of the algorithm, while the variability of the scan resolutions contributed to demonstrate the computational scalability of the multigrid architecture. The system is fully applicable to the colon measurement clinical routine, being a substantial step towards a fully automated segmentation. |
وصف الملف: | application/pdf |
اللغة: | English |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab7b3ed2897f093e373948799f02a5a2 http://hdl.handle.net/2117/191365 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....ab7b3ed2897f093e373948799f02a5a2 |
قاعدة البيانات: | OpenAIRE |
الوصف غير متاح. |