Core-free, rank two coset geometries from edge-transitive bipartite graphs

التفاصيل البيبلوغرافية
العنوان: Core-free, rank two coset geometries from edge-transitive bipartite graphs
المؤلفون: Dimitri Leemans, Julie De Saedeleer, Mark Mixer, Tomaž Pisanski
المصدر: Mathematica slovaca, 64 (4
بيانات النشر: Walter de Gruyter GmbH, 2014.
سنة النشر: 2014
مصطلحات موضوعية: General Mathematics, Symmetric graph, incidence geometry, Group Theory (math.GR), Combinatorics, Mathematics - Algebraic Geometry, High Energy Physics::Theory, Indifference graph, Pathwidth, Chordal graph, FOS: Mathematics, Mathematics - Combinatorics, Cograph, Algebraic Geometry (math.AG), Mathematics, Discrete mathematics, core-free geometry, 1-planar graph, coset geometry, 51A10, 51E30, 20B25, 05B20, 05C62, Modular decomposition, Mathématiques, bipartite graph, Combinatorics (math.CO), Mathematics - Group Theory, Graph product
الوصف: It is known that the Levi graph of any rank two coset geometry is an edge-transitive graph, and thus coset geometries can be used to construct many edge transitive graphs. In this paper, we consider the reverse direction. Starting from edge-transitive graphs, we construct all associated core-free, rank two coset geometries. In particular, we focus on 3-valent and 4-valent graphs, and are able to construct coset geometries arising from these graphs. We summarize many properties of these coset geometries in a sequence of tables; in the 4-valent case we restrict to graphs that have relatively small vertex-stabilizers.
SCOPUS: ar.j
info:eu-repo/semantics/published
وصف الملف: 1 full-text file(s): application/pdf
تدمد: 1337-2211
0139-9918
DOI: 10.2478/s12175-014-0253-3
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8aac994b20e795b9116580f2d64b748
https://doi.org/10.2478/s12175-014-0253-3
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....a8aac994b20e795b9116580f2d64b748
قاعدة البيانات: OpenAIRE
الوصف
تدمد:13372211
01399918
DOI:10.2478/s12175-014-0253-3