Core-free, rank two coset geometries from edge-transitive bipartite graphs
العنوان: | Core-free, rank two coset geometries from edge-transitive bipartite graphs |
---|---|
المؤلفون: | Dimitri Leemans, Julie De Saedeleer, Mark Mixer, Tomaž Pisanski |
المصدر: | Mathematica slovaca, 64 (4 |
بيانات النشر: | Walter de Gruyter GmbH, 2014. |
سنة النشر: | 2014 |
مصطلحات موضوعية: | General Mathematics, Symmetric graph, incidence geometry, Group Theory (math.GR), Combinatorics, Mathematics - Algebraic Geometry, High Energy Physics::Theory, Indifference graph, Pathwidth, Chordal graph, FOS: Mathematics, Mathematics - Combinatorics, Cograph, Algebraic Geometry (math.AG), Mathematics, Discrete mathematics, core-free geometry, 1-planar graph, coset geometry, 51A10, 51E30, 20B25, 05B20, 05C62, Modular decomposition, Mathématiques, bipartite graph, Combinatorics (math.CO), Mathematics - Group Theory, Graph product |
الوصف: | It is known that the Levi graph of any rank two coset geometry is an edge-transitive graph, and thus coset geometries can be used to construct many edge transitive graphs. In this paper, we consider the reverse direction. Starting from edge-transitive graphs, we construct all associated core-free, rank two coset geometries. In particular, we focus on 3-valent and 4-valent graphs, and are able to construct coset geometries arising from these graphs. We summarize many properties of these coset geometries in a sequence of tables; in the 4-valent case we restrict to graphs that have relatively small vertex-stabilizers. SCOPUS: ar.j info:eu-repo/semantics/published |
وصف الملف: | 1 full-text file(s): application/pdf |
تدمد: | 1337-2211 0139-9918 |
DOI: | 10.2478/s12175-014-0253-3 |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8aac994b20e795b9116580f2d64b748 https://doi.org/10.2478/s12175-014-0253-3 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....a8aac994b20e795b9116580f2d64b748 |
قاعدة البيانات: | OpenAIRE |
تدمد: | 13372211 01399918 |
---|---|
DOI: | 10.2478/s12175-014-0253-3 |