ASYMPTOTIC BEHAVIOR AND BLOW-UP OF SOLUTIONS FOR A NONLINEAR VISCOELASTIC WAVE EQUATION WITH BOUNDARY DISSIPATION

التفاصيل البيبلوغرافية
العنوان: ASYMPTOTIC BEHAVIOR AND BLOW-UP OF SOLUTIONS FOR A NONLINEAR VISCOELASTIC WAVE EQUATION WITH BOUNDARY DISSIPATION
المؤلفون: Faramarz Tahamtani, Amir Peyravi
المصدر: Taiwanese J. Math. 17, no. 6 (2013), 1921-1943
بيانات النشر: Mathematical Society of the Republic of China, 2013.
سنة النشر: 2013
مصطلحات موضوعية: 35B44, General Mathematics, Mathematical analysis, 35B40, Boundary (topology), 35L20, Function (mathematics), Wave equation, 35L70, boundary dissipation, Dissipative system, Relaxation (physics), Boundary value problem, Nabla symbol, asymptotic behavior, Energy (signal processing), blow-up, Mathematics, Mathematical physics
الوصف: We study the nonlinear viscoelastic wave equation $$ u_{tt} - k_{0} \Delta u + \int_{0}^{t} g(t-s) \mathrm{div} \bigr[a(x) \nabla u(s) \bigr] ds + \bigr(k_{1} + b(x) |u_{t}|^{m-2}\bigr) u_{t} = |u|^{p-2}u $$ with dissipative boundary conditions. Under some restrictions on the initial data and the relaxation function and without imposing any restrictive assumption on $a(x)$, we show that the rate of decay is similar to that of $g$. We also prove the blow-up results for certain solutions in two cases. In the case $k_{1} = 0$, $m=2$, we show that the solutions blow up in finite time under some restrictions on initial data and for arbitrary initial energy. In another case, $k_{1}\geq 0$, $m\geq 2$, we prove a nonexistence result when the initial energy is less than potential well depth.
وصف الملف: application/pdf
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a194b877d5a22e4ded54ef73e8c9d73a
http://projecteuclid.org/euclid.twjm/1499706278
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....a194b877d5a22e4ded54ef73e8c9d73a
قاعدة البيانات: OpenAIRE