A semidiscrete scheme for evolution equations with memory

التفاصيل البيبلوغرافية
العنوان: A semidiscrete scheme for evolution equations with memory
المؤلفون: Filippo Dell'Oro, Vittorino Pata, Olivier Goubet, Youcef Mammeri
المصدر: Discrete & Continuous Dynamical Systems - A. 39:5637-5658
بيانات النشر: American Institute of Mathematical Sciences (AIMS), 2019.
سنة النشر: 2019
مصطلحات موضوعية: Physics, convolution kernel, Pure mathematics, exponential stability, Discretization, Applied Mathematics, equations with memory, Thermal conduction, convergence of the scheme, symbols.namesake, Exponential stability, Scheme (mathematics), Dirichlet boundary condition, Convergence (routing), Semidiscrete scheme, symbols, Discrete Mathematics and Combinatorics, Analysis
الوصف: We introduce a new mathematical framework for the time discretization of evolution equations with memory. As a model, we focus on an abstract version of the equation \begin{document}$ \partial_t u(t) - \int_0^\infty g(s) \Delta u(t-s)\, {{\rm{d}}} s = 0 $\end{document} with Dirichlet boundary conditions, modeling hereditary heat conduction with Gurtin-Pipkin thermal law. Well-posedness and exponential stability of the discrete scheme are shown, as well as the convergence to the solutions of the continuous problem when the time-step parameter vanishes.
تدمد: 1553-5231
DOI: 10.3934/dcds.2019247
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e25f72ddf7b93247ebf5f9cc37466f2
https://doi.org/10.3934/dcds.2019247
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....9e25f72ddf7b93247ebf5f9cc37466f2
قاعدة البيانات: OpenAIRE
الوصف
تدمد:15535231
DOI:10.3934/dcds.2019247