The partial clone of linear terms

التفاصيل البيبلوغرافية
العنوان: The partial clone of linear terms
المؤلفون: Klaus Denecke
المصدر: Siberian Mathematical Journal. 57:589-598
بيانات النشر: Pleiades Publishing Ltd, 2016.
سنة النشر: 2016
مصطلحات موضوعية: Endomorphism, General Mathematics, 010102 general mathematics, Institut für Mathematik, Quotient algebra, Term (logic), 01 natural sciences, 010101 applied mathematics, Combinatorics, Identity (mathematics), Superposition principle, Clone (algebra), Mathematics::Metric Geometry, 0101 mathematics, Variety (universal algebra), Vector space, Mathematics
الوصف: Generalizing a linear expression over a vector space, we call a term of an arbitrary type tau linear if its every variable occurs only once. Instead of the usual superposition of terms and of the total many-sorted clone of all terms in the case of linear terms, we define the partial many-sorted superposition operation and the partial many-sorted clone that satisfies the superassociative law as weak identity. The extensions of linear hypersubstitutions are weak endomorphisms of this partial clone. For a variety V of one-sorted total algebras of type tau, we define the partial many-sorted linear clone of V as the partial quotient algebra of the partial many-sorted clone of all linear terms by the set of all linear identities of V. We prove then that weak identities of this clone correspond to linear hyperidentities of V.
تدمد: 1573-9260
0037-4466
DOI: 10.1134/s0037446616040030
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9dae65e8f3b61d1d9cd3765ba3709c7e
https://doi.org/10.1134/s0037446616040030
Rights: CLOSED
رقم الانضمام: edsair.doi.dedup.....9dae65e8f3b61d1d9cd3765ba3709c7e
قاعدة البيانات: OpenAIRE
الوصف
تدمد:15739260
00374466
DOI:10.1134/s0037446616040030