Moving vertices to make drawings plane

التفاصيل البيبلوغرافية
العنوان: Moving vertices to make drawings plane
المؤلفون: Goaoc, X., Kratochvil, J., Okamoto, Y., Shin, C.S., Wolff, A., Hong, S.K., Nishizeki, T., Quan, W.
المساهمون: Effective Geometric Algorithms for Surfaces and Visibility (VEGAS), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Department of Applied Mathematics (KAM) (KAM), Univerzita Karlova v Praze, Discrete Optimization Laboratory, Toyohashi University of Technology, Departement of Electronics and Information Engineering, Hankuk University of Foreign Studies, Faculteit Wiskunde & Informatica, Technische Universiteit Eindhoven (TU/e), Algorithms
المصدر: 15th International Symposium on Graph Drawing
15th International Symposium on Graph Drawing, Sep 2007, Sydney, Australia. pp.101-112, ⟨10.1007/978-3-540-77537-9_13⟩
ResearcherID
Graph Drawing (15th International Symposium, GD'07, Sydney, Australia, September 23-26, 2007, Revised Papers), 101-112
STARTPAGE=101;ENDPAGE=112;TITLE=Graph Drawing (15th International Symposium, GD'07, Sydney, Australia, September 23-26, 2007, Revised Papers)
Graph Drawing ISBN: 9783540775362
Graph Drawing
سنة النشر: 2008
مصطلحات موضوعية: Computational Geometry (cs.CG), FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Planar straight-line graph, Slope number, 0102 computer and information sciences, Computational Complexity (cs.CC), [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG], 01 natural sciences, Combinatorics, symbols.namesake, Graph drawing, TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY, Outerplanar graph, Wheel graph, Dominance drawing, 0101 mathematics, Mathematics, Discrete mathematics, Book embedding, 010102 general mathematics, Planar graph, Computer Science - Computational Complexity, 010201 computation theory & mathematics, symbols, Computer Science - Computational Geometry, Computer Science - Discrete Mathematics, MathematicsofComputing_DISCRETEMATHEMATICS
الوصف: A straight-line drawing $\delta$ of a planar graph $G$ need not be plane, but can be made so by moving some of the vertices. Let shift$(G,\delta)$ denote the minimum number of vertices that need to be moved to turn $\delta$ into a plane drawing of $G$. We show that shift$(G,\delta)$ is NP-hard to compute and to approximate, and we give explicit bounds on shift$(G,\delta)$ when $G$ is a tree or a general planar graph. Our hardness results extend to 1BendPointSetEmbeddability, a well-known graph-drawing problem.
Comment: This paper has been merged with http://arxiv.org/abs/0709.0170
اللغة: English
ردمك: 978-3-540-77536-2
تدمد: 0302-9743
DOI: 10.1007/978-3-540-77537-9_13
DOI: 10.1007/978-3-540-77537-9_13⟩
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::941e151e661442f28fd8a6d8c0dae33f
https://doi.org/10.1007/978-3-540-77537-9_13
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....941e151e661442f28fd8a6d8c0dae33f
قاعدة البيانات: OpenAIRE
الوصف
ردمك:9783540775362
تدمد:03029743
DOI:10.1007/978-3-540-77537-9_13