Attosecond-fast internal photoemission
العنوان: | Attosecond-fast internal photoemission |
---|---|
المؤلفون: | Takuya Higuchi, Lothar Ley, Peter Hommelhoff, Christian Heide, Jürgen Ristein, Martin Hauck, Heiko B. Weber |
المساهمون: | Lehrstuhl für Technische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Fakultät für Physik [Garching], Ludwig-Maximilians-Universität München (LMU), European Project: 712590,H2020 FET Open 'Technologies futures et émergentes',829153,PETACom(2019), European Project: 616823,EC:FP7:ERC,ERC-2013-CoG,NEARFIELDATTO(2014) |
المصدر: | Nature Photonics Nature Photonics, 2020, ⟨10.1038/s41566-019-0580-6⟩ |
سنة النشر: | 2020 |
مصطلحات موضوعية: | Materials science, Schottky barrier, Attosecond, FOS: Physical sciences, 02 engineering and technology, Electron, Applied Physics (physics.app-ph), 7. Clean energy, 01 natural sciences, law.invention, 010309 optics, law, 0103 physical sciences, Condensed Matter - Materials Science, business.industry, Graphene, Materials Science (cond-mat.mtrl-sci), Physics - Applied Physics, Photoelectric effect, 021001 nanoscience & nanotechnology, Atomic and Molecular Physics, and Optics, Semimetal, Electronic, Optical and Magnetic Materials, Semiconductor, Femtosecond, [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic, Optoelectronics, 0210 nano-technology, business |
الوصف: | The photoelectric effect has a sister process relevant in optoelectronics called internal photoemission1–3. Here an electron is photoemitted from a metal into a semiconductor4,5. While the photoelectric effect takes place within less than 100 attoseconds (1 as = 10−18 seconds)6,7, the attosecond timescale has so far not been measured for internal photoemission. Based on the new method CHArge transfer time MEasurement via Laser pulse duration-dependent saturation fluEnce determinatiON—CHAMELEON—we show that the atomically thin semimetal graphene coupled to bulk silicon carbide, forming a Schottky junction, allows charge transfer times as fast as (300 ± 200) as. These results are supported by a simple quantum mechanical model simulation. With the obtained cut-off bandwidth of 3.3 PHz (1 PHz = 1015 Hz) for the charge transfer rate, this semimetal/semiconductor interface represents a functional solid-state interface offering the speed and design space required for future light-wave signal processing. Femtosecond laser pulses are sent to a graphene/SiC interface to investigate photoinduced charge transfer from graphene to SiC. A charge transfer time of 300 attoseconds is obtained via laser-pulse-duration-dependent saturation fluence determination. |
اللغة: | English |
تدمد: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-019-0580-6⟩ |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92de93ecda1919807fdeb68868a5187c http://arxiv.org/abs/2001.02989 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....92de93ecda1919807fdeb68868a5187c |
قاعدة البيانات: | OpenAIRE |
تدمد: | 17494885 17494893 |
---|---|
DOI: | 10.1038/s41566-019-0580-6⟩ |