Symmetric Mahler’s conjecture for the volume product in the 3-dimensional case

التفاصيل البيبلوغرافية
العنوان: Symmetric Mahler’s conjecture for the volume product in the 3-dimensional case
المؤلفون: Masataka Shibata, Hiroshi Iriyeh
المصدر: Duke Math. J. 169, no. 6 (2020), 1077-1134
بيانات النشر: Duke University Press, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Conjecture, Mahler conjecture, General Mathematics, 010102 general mathematics, 52A40, Regular polygon, 01 natural sciences, convex body, 52A38, Combinatorics, symplectic capacity, Parallelepiped, 55M25, Product (mathematics), 0103 physical sciences, Convex body, 010307 mathematical physics, degree of maps, 0101 mathematics, volume product, Volume (compression), Mathematics
الوصف: We prove Mahler’s conjecture concerning the volume product of centrally symmetric, convex bodies in $\mathbb{R}^{n}$ in the case where $n=3$ . More precisely, we show that, for every $3$ -dimensional, centrally symmetric, convex body $K\subset\mathbb{R}^{3}$ , the volume product $|{K}||{K^{\circ}}|$ is greater than or equal to $32/3$ with equality if and only if $K$ or $K^{\circ}$ is a parallelepiped.
وصف الملف: application/pdf
تدمد: 0012-7094
DOI: 10.1215/00127094-2019-0072
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90ad541f3ff994a11f8242fadc76a77b
https://doi.org/10.1215/00127094-2019-0072
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....90ad541f3ff994a11f8242fadc76a77b
قاعدة البيانات: OpenAIRE
الوصف
تدمد:00127094
DOI:10.1215/00127094-2019-0072