Odd values of the Ramanujan tau function

التفاصيل البيبلوغرافية
العنوان: Odd values of the Ramanujan tau function
المؤلفون: Vandita Patel, Adela Gherga, Samir Siksek, Michael A. Bennett
المصدر: Bennett, M A, Gherga, A, Patel, V & Siksek, S 2021, ' Odd values of the Ramanujan tau function ', Mathematische Annalen . https://doi.org/10.1007/s00208-021-02241-3
سنة النشر: 2021
مصطلحات موضوعية: 11D61, Mathematics - Number Theory, Divisor, General Mathematics, Mathematics::Number Theory, 010102 general mathematics, 010103 numerical & computational mathematics, Galois module, 01 natural sciences, Prime (order theory), Ramanujan's sum, Combinatorics, Elliptic curve, symbols.namesake, Prime factor, symbols, FOS: Mathematics, Ramanujan tau function, Number Theory (math.NT), 0101 mathematics, Variety (universal algebra), QA, Mathematics
الوصف: We prove a number of results regarding odd values of the Ramanujan $$\tau $$ -function. For example, we prove the existence of an effectively computable positive constant $$\kappa $$ such that if $$\tau (n)$$ is odd and $$n \ge 25$$ then either $$\begin{aligned} P(\tau (n)) \; > \; \kappa \cdot \frac{\log \log \log {n}}{\log \log \log \log {n}} \end{aligned}$$ or there exists a prime $$p \mid n$$ with $$\tau (p)=0$$ . Here P(m) denotes the largest prime factor of m. We also solve the equation $$\tau (n)=\pm 3^{b_1} 5^{b_2} 7^{b_3} 11^{b_4}$$ and the equations $$\tau (n)=\pm q^b$$ where $$3\le q < 100$$ is prime and the exponents are arbitrary nonnegative integers. We make use of a variety of methods, including the Primitive Divisor Theorem of Bilu, Hanrot and Voutier, bounds for solutions to Thue–Mahler equations due to Bugeaud and Győry, and the modular approach via Galois representations of Frey–Hellegouarch elliptic curves.
وصف الملف: application/pdf
اللغة: English
تدمد: 0025-5831
DOI: 10.1007/s00208-021-02241-3
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84af588158e4678b8fb6c6ffdbcb1d79
http://arxiv.org/abs/2101.02933
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....84af588158e4678b8fb6c6ffdbcb1d79
قاعدة البيانات: OpenAIRE
الوصف
تدمد:00255831
DOI:10.1007/s00208-021-02241-3