A vector heterogeneous autoregressive index model for realized volatility measures

التفاصيل البيبلوغرافية
العنوان: A vector heterogeneous autoregressive index model for realized volatility measures
المؤلفون: Alain Hecq, Barbara Guardabascio, Gianluca Cubadda
المساهمون: QE Econometrics, RS: GSBE EFME
المصدر: International Journal of Forecasting, 33(2), 337-344. Elsevier Science
سنة النشر: 2017
مصطلحات موضوعية: Index (economics), Generalization, Computer science, Realized variance, TRANSMISSION, Gaussian, HAR models, MARKETS, Set (abstract data type), symbols.namesake, 0502 economics and business, Economics, Feature (machine learning), Econometrics, Common volatility, 050207 economics, Business and International Management, 050205 econometrics, 05 social sciences, Index models, Combinations of realized volatilities, Forecasting, Autoregressive model, Settore SECS-S/03 - Statistica Economica, Principal component analysis, symbols
الوصف: This paper introduces a new model for detecting the presence of commonalities in a set of realized volatility measures. In particular, we propose a multivariate generalization of the heterogeneous autoregressive model (HAR) that is endowed with a common index structure. The vector heterogeneous autoregressive index model has the property of generating a common index that preserves the same temporal cascade structure as in the HAR model, a feature that is not shared by other aggregation methods (e.g., principal components). The parameters of this model can be estimated easily by a proper switching algorithm that increases the Gaussian likelihood at each step. We illustrate our approach using an empirical analysis that aims to combine several realized volatility measures of the same equity index for three different markets.
اللغة: English
تدمد: 0169-2070
DOI: 10.1016/j.ijforecast.2016.09.002
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::841d994ac295c7973902bc4b07d36bf4
https://doi.org/10.1016/j.ijforecast.2016.09.002
Rights: RESTRICTED
رقم الانضمام: edsair.doi.dedup.....841d994ac295c7973902bc4b07d36bf4
قاعدة البيانات: OpenAIRE
الوصف
تدمد:01692070
DOI:10.1016/j.ijforecast.2016.09.002