Samarium hexaboride is a trivial surface conductor

التفاصيل البيبلوغرافية
العنوان: Samarium hexaboride is a trivial surface conductor
المؤلفون: Peter Hlawenka, Natalya Shitsevalova, Karol Flachbart, Andrei Varykhalov, Konrad Siemensmeyer, Jaime Sánchez-Barriga, Oliver Rader, Eugen Weschke, Anatoliy V. Dukhnenko, V. B. Filipov, Emilie D. L. Rienks, Slavomír Gabáni
المصدر: Nature Communications
Nature Communications, Vol 9, Iss 1, Pp 1-7 (2018)
سنة النشر: 2019
مصطلحات موضوعية: Surface (mathematics), Samarium hexaboride, Science, FOS: Physical sciences, General Physics and Astronomy, chemistry.chemical_element, 02 engineering and technology, 01 natural sciences, General Biochemistry, Genetics and Molecular Biology, Article, 500 Naturwissenschaften und Mathematik, Condensed Matter - Strongly Correlated Electrons, Surface conductivity, 0103 physical sciences, ddc:510, lcsh:Science, 010306 general physics, Controlling collective states, Surface states, Physics, Multidisciplinary, Strongly Correlated Electrons (cond-mat.str-el), Condensed matter physics, Kondo insulator, Institut für Mathematik, General Chemistry, 021001 nanoscience & nanotechnology, Samarium, chemistry, Topological insulator, lcsh:Q, Condensed Matter::Strongly Correlated Electrons, Strongly correlated material, ddc:500, Mathematisch-Naturwissenschaftliche Fakultät, 0210 nano-technology
الوصف: SmB6 is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\varGamma }}$$\end{document}Γ¯ state to appear Rashba split and explain the prominent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar X$$\end{document}X¯ state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding.
Samarium hexahoride is argued to be a topological Kondo insulator, but this claim remains under debate. Here, Hlawenka et al. provide a topologically trivial explanation for the conducting states at the (100) surface of samarium hexaboride; an explanation based on Rashba splitting and a surface shift of the Kondo resonance.
وصف الملف: application/pdf
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7eee86f181d12dbd4ff071da906593ed
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/42421
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....7eee86f181d12dbd4ff071da906593ed
قاعدة البيانات: OpenAIRE