Adaptive and robust experimental design for linear dynamical models using Kalman filter

التفاصيل البيبلوغرافية
العنوان: Adaptive and robust experimental design for linear dynamical models using Kalman filter
المؤلفون: Arno Strouwen, Bart M. Nicolaï, Peter Goos
المصدر: Statistical papers
Statistical Papers
بيانات النشر: Springer Science and Business Media LLC, 2023.
سنة النشر: 2023
مصطلحات موضوعية: Statistics and Probability, Statistics, Probability and Uncertainty, Mathematics
الوصف: Current experimental design techniques for dynamical systems often only incorporate measurement noise, while dynamical systems also involve process noise. To construct experimental designs we need to quantify their information content. The Fisher information matrix is a popular tool to do so. Calculating the Fisher information matrix for linear dynamical systems with both process and measurement noise involves estimating the uncertain dynamical states using a Kalman filter. The Fisher information matrix, however, depends on the true but unknown model parameters. In this paper we combine two methods to solve this issue and develop a robust experimental design methodology. First, Bayesian experimental design averages the Fisher information matrix over a prior distribution of possible model parameter values. Second, adaptive experimental design allows for this information to be updated as measurements are being gathered. This updated information is then used to adapt the remainder of the design.
تدمد: 1613-9798
0932-5026
DOI: 10.1007/s00362-023-01438-9
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e20ee20f1b972d03b9329b73c06f076
https://doi.org/10.1007/s00362-023-01438-9
Rights: EMBARGO
رقم الانضمام: edsair.doi.dedup.....7e20ee20f1b972d03b9329b73c06f076
قاعدة البيانات: OpenAIRE
الوصف
تدمد:16139798
09325026
DOI:10.1007/s00362-023-01438-9