The Balian-Low theorem for locally compact abelian groups and vector bundles

التفاصيل البيبلوغرافية
العنوان: The Balian-Low theorem for locally compact abelian groups and vector bundles
المؤلفون: Ulrik Enstad
سنة النشر: 2019
مصطلحات موضوعية: Applied Mathematics, General Mathematics, 010102 general mathematics, Zak transform, Mathematics - Operator Algebras, Second-countable space, Vector bundle, 010103 numerical & computational mathematics, 01 natural sciences, Functional Analysis (math.FA), Combinatorics, Annihilator, Mathematics - Functional Analysis, Compact space, Balian–Low theorem, FOS: Mathematics, Locally compact space, 0101 mathematics, Abelian group, 42C15 43A70 46L08, Operator Algebras (math.OA), Mathematics
الوصف: Let $\Lambda$ be a lattice in a second countable, locally compact abelian group $G$ with annihilator $\Lambda^{\perp} \subseteq \widehat{G}$. We investigate the validity of the following statement: For every $\eta$ in the Feichtinger algebra $S_0(G)$, the Gabor system $\{ M_{\tau} T_{\lambda} \eta \}_{\lambda \in \Lambda, \tau \in \Lambda^{\perp}}$ is not a frame for $L^2(G)$. When $G = \mathbb{R}$ and $\Lambda = \alpha \mathbb{Z}$, this statement is a variant of the Balian-Low theorem. Extending a result of R. Balan, we show that whether the statement generalizes to $(G,\Lambda)$ is equivalent to the nontriviality of a certain vector bundle over the compact space $(G/\Lambda) \times (\widehat{G}/\Lambda^{\perp})$. We prove this equivalence using a connection between Gabor frames and Heisenberg modules. More specifically, we show that the Zak transform can be viewed as an isomorphism of certain Hilbert $C^*$-modules. As an application, we prove a new Balian-Low theorem for the group $\mathbb{R} \times \mathbb{Q}_p$, where $\mathbb{Q}_p$ denotes the $p$-adic numbers.
Comment: 29 pages
اللغة: English
تدمد: 0021-7824
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75ef9e477907dad56ddd6fe634136e27
http://arxiv.org/abs/1905.06827
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....75ef9e477907dad56ddd6fe634136e27
قاعدة البيانات: OpenAIRE