Potent predictive CpG signature for temozolomide response in non-glioma-CpG island methylator phenotype glioblastomas with methylated MGMT promoter
العنوان: | Potent predictive CpG signature for temozolomide response in non-glioma-CpG island methylator phenotype glioblastomas with methylated MGMT promoter |
---|---|
المؤلفون: | Jiu Wang, Meng Zhang, Yi-feng Liu, Yan Yao, Yu-sha Ji, Amandine Etcheverry, Kun Chen, Bao-qiang Song, Wei Lin, Anan Yin, Ya-long He |
المساهمون: | Xijing Hospital, Fourth Military Medical University (FMMU), Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), 81402049, 81802486, National Natural Science Foundation of China, ZR2020QH0233, Natural Science Foundation of Shandong Province |
المصدر: | Epigenomics Epigenomics, 2022, 14 (20), pp.1233-1247. ⟨10.2217/epi-2022-0344⟩ |
بيانات النشر: | HAL CCSD, 2022. |
سنة النشر: | 2022 |
مصطلحات موضوعية: | Cancer Research, DNA methylation, Tumor Suppressor Proteins, [SDV]Life Sciences [q-bio], glioblastoma, Glioma, temozolomide, Phenotype, DNA Repair Enzymes, methylated MGMT, Genetics, Humans, CpG Islands, predictive biomarker, DNA Modification Methylases |
الوصف: | Aim: We aimed to identify potent CpG signatures predicting temozolomide (TMZ) response in glioblastomas (GBMs) that do not have the glioma-CpG island methylator phenotype (G-CIMP) but have a methylated promoter of MGMT (me MGMT). Materials & methods: Different datasets of non-G-CIMP me MGMT GBMs with molecular and clinical data were analyzed. Results: A panel of 77 TMZ efficacy-related CpGs and a seven-CpG risk signature were identified and validated for distinguishing differential outcomes to radiotherapy plus TMZ versus radiotherapy alone in non-G-CIMP me MGMT GBMs. An integrated classification scheme was also proposed for refining a MGMT-based TMZ-guiding approach in all G-CIMP-GBMs. Conclusion: The CpG signatures may serve as promising predictive biomarker candidates for guiding optimal TMZ usage in non-G-CIMP me MGMT GBMs. |
اللغة: | English |
تدمد: | 1750-1911 |
DOI: | 10.2217/epi-2022-0344⟩ |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::708af101512f1f4d877b9d10530ee45f https://hal.science/hal-03898822 |
رقم الانضمام: | edsair.doi.dedup.....708af101512f1f4d877b9d10530ee45f |
قاعدة البيانات: | OpenAIRE |
تدمد: | 17501911 |
---|---|
DOI: | 10.2217/epi-2022-0344⟩ |