Bayesian Calibration using Different Prior Distributions: an Iterative Maximum A Posteriori Approach for Radio Interferometers

التفاصيل البيبلوغرافية
العنوان: Bayesian Calibration using Different Prior Distributions: an Iterative Maximum A Posteriori Approach for Radio Interferometers
المؤلفون: Remy Boyer, Pascal Larzabal, M. N. El Korso, André Ferrari, V. Ollier
المساهمون: Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École normale supérieure - Rennes (ENS Rennes)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Laboratoire Energétique Mécanique Electromagnétisme (LEME), Université Paris Nanterre (UPN), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS), Boyer, Remy
المصدر: 26th European Signal Processing Conference (EUSIPCO 2018)
26th European Signal Processing Conference (EUSIPCO 2018), Sep 2018, Rome, Italy
EUSIPCO
سنة النشر: 2018
مصطلحات موضوعية: Signal Processing (eess.SP), FOS: Computer and information sciences, Computer science, Iterative method, MathematicsofComputing_NUMERICALANALYSIS, FOS: Physical sciences, 02 engineering and technology, robustness, [SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph], 01 natural sciences, Statistics - Applications, symbols.namesake, compound-Gaussian distribution, 0103 physical sciences, FOS: Electrical engineering, electronic engineering, information engineering, 0202 electrical engineering, electronic engineering, information engineering, Maximum a posteriori estimation, Applications (stat.AP), Electrical Engineering and Systems Science - Signal Processing, Instrumentation and Methods for Astrophysics (astro-ph.IM), 010303 astronomy & astrophysics, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing, Signal processing, Laplace transform, [SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph], Bayesian calibration, Cauchy distribution, 020206 networking & telecommunications, Bayesian statistics, Gaussian noise, maximum a posteriori estimation, Outlier, symbols, Astrophysics - Instrumentation and Methods for Astrophysics, Algorithm, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
الوصف: International audience; In this paper, we aim to design robust estimation techniques based on the compound-Gaussian (CG) process and adapted for calibration of radio interferometers. The motivation beyond this is due to the presence of outliers leading to an unrealistic traditional Gaussian noise assumption. Consequently , to achieve robustness, we adopt a maximum a poste-riori (MAP) approach which exploits Bayesian statistics and follows a sequential updating procedure here. The proposed algorithm is applied in a multi-frequency scenario in order to enhance the estimation and correction of perturbation effects. Numerical simulations assess the performance of the proposed algorithm for different noise models, Student's t, K, Laplace, Cauchy and inverse-Gaussian compound-Gaussian distributions w.r.t. the classical non-robust Gaussian noise assumption .
وصف الملف: application/pdf
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6fda101ba3a2c18456ac62edd2275168
http://arxiv.org/abs/1807.11382
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....6fda101ba3a2c18456ac62edd2275168
قاعدة البيانات: OpenAIRE