Classifying Retinal Degeneration in Histological Sections Using Deep Learning

التفاصيل البيبلوغرافية
العنوان: Classifying Retinal Degeneration in Histological Sections Using Deep Learning
المؤلفون: Mohit N. Shivdasani, Richard A. Williams, Stephanie B. Epp, Daniel Al Mouiee, Michael Kalloniatis, Ceara McGowan, Thomas C Spencer, Chi D Luu, David A X Nayagam, Lisa Nivison-Smith, Erik Meijering
المصدر: Translational Vision Science & Technology
سنة النشر: 2021
مصطلحات موضوعية: 0301 basic medicine, Retinal degeneration, Computer science, hematoxylin and eosin (H&E) staining, Biomedical Engineering, convolutional neural network, Context (language use), Convolutional neural network, Article, 03 medical and health sciences, chemistry.chemical_compound, 0302 clinical medicine, Cohen's kappa, Artificial Intelligence, retinitis pigmentosa, medicine, Animals, retinal dystrophy, Monocular, Artificial neural network, business.industry, Deep learning, Retinal Degeneration, deep learning, Pattern recognition, Retinal, medicine.disease, Ophthalmology, 030104 developmental biology, machine learning, chemistry, 030221 ophthalmology & optometry, Cats, Artificial intelligence, Neural Networks, Computer, business
الوصف: Purpose Artificial intelligence (AI) techniques are increasingly being used to classify retinal diseases. In this study we investigated the ability of a convolutional neural network (CNN) in categorizing histological images into different classes of retinal degeneration. Methods Images were obtained from a chemically induced feline model of monocular retinal dystrophy and split into training and testing sets. The training set was graded for the level of retinal degeneration and used to train various CNN architectures. The testing set was evaluated through the best architecture and graded by six observers. Comparisons between model and observer classifications, and interobserver variability were measured. Finally, the effects of using less training images or images containing half the presentable context were investigated. Results The best model gave weighted-F1 scores in the range 85% to 90%. Cohen kappa scores reached up to 0.86, indicating high agreement between the model and observers. Interobserver variability was consistent with the model-observer variability in the model's ability to match predictions with the observers. Image context restriction resulted in model performance reduction by up to 6% and at least one training set size resulted in a model performance reduction of 10% compared to the original size. Conclusions Detecting the presence and severity of up to three classes of retinal degeneration in histological data can be reliably achieved with a deep learning classifier. Translational relevance This work lays the foundations for future AI models which could aid in the evaluation of more intricate changes occurring in retinal degeneration, particularly in other types of clinically derived image data.
تدمد: 2164-2591
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e22b94ae8168fca3572d229908c2580
https://pubmed.ncbi.nlm.nih.gov/34110385
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....6e22b94ae8168fca3572d229908c2580
قاعدة البيانات: OpenAIRE