Towards a Dynamic Data Driven Application System for wildfire simulation

التفاصيل البيبلوغرافية
العنوان: Towards a Dynamic Data Driven Application System for wildfire simulation
المؤلفون: Robert Kremens, Mingshi Chen, Wei Zhao, Adam F. Zornes, Guan Qin, Vaibhav V. Kulkarni, Lynn S. Bennethum, Janice L. Coen, Minjeong Kim, Andrew Knyazev, Craig C. Douglas, Jianjia Wu, Leopoldo P. Franca, Craig J. Johns, Jan Mandel, Anthony Vodacek
المصدر: Scopus-Elsevier
Lecture Notes in Computer Science ISBN: 9783540260431
International Conference on Computational Science (2)
ResearcherID
مصطلحات موضوعية: Nonlinear system, Data assimilation, Computer science, Dynamic data, Real-time computing, Parallel algorithm, Ensemble Kalman filter, Kalman filter, Dynamical system, Physics::Atmospheric and Oceanic Physics, Simulation, Visualization, Data modeling
الوصف: We report on an ongoing effort to build a Dynamic Data Driven Application System (DDDAS) for short-range forecast of wildfire behavior from real-time weather data, images, and sensor streams. The system should change the forecast when new data is received. The basic approach is to encapsulate the model code and use an ensemble Kalman filter in time-space. Several variants of the ensemble Kalman filter are presented, for out-of-sequence data assimilation, hidden model states, and highly nonlinear problems. Parallel implementation and web-based visualization are also discussed.
ردمك: 978-3-540-26043-1
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6bc5c6ae368bd965340a927f3bfc7148
http://www.scopus.com/inward/record.url?eid=2-s2.0-25144444359&partnerID=MN8TOARS
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....6bc5c6ae368bd965340a927f3bfc7148
قاعدة البيانات: OpenAIRE