Thermal and diffusional properties of (Th,Np)O2 and (U,Np)O2 mixed oxides

التفاصيل البيبلوغرافية
العنوان: Thermal and diffusional properties of (Th,Np)O2 and (U,Np)O2 mixed oxides
المؤلفون: Partha Sarathi Ghosh, Robin W. Grimes, Ashok Arya, Navaratnarajah Kuganathan
المصدر: Journal of Nuclear Materials. 521:89-98
بيانات النشر: Elsevier BV, 2019.
سنة النشر: 2019
مصطلحات موضوعية: Technology, Nuclear and High Energy Physics, Materials science, URANIUM-DIOXIDE, Materials Science, Thermodynamics, chemistry.chemical_element, Materials Science, Multidisciplinary, Interatomic potential, 02 engineering and technology, Thermal diffusivity, 01 natural sciences, Oxygen, Thermal expansion, 010305 fluids & plasmas, DENSITY-FUNCTIONAL THEORY, TRANSPORT-PROPERTIES, Thermal conductivity, (U,Np)O-2 MOX, X-RAY-DIFFRACTION, 0103 physical sciences, General Materials Science, Nuclear Science & Technology, 0912 Materials Engineering, CONDUCTIVITY, Oxygen diffusion, Science & Technology, Energy, Ionic radius, Molecular dynamics simulations, (Th,Np)O-2 MOX, EXPANSION, Atmospheric temperature range, 021001 nanoscience & nanotechnology, Nuclear Energy and Engineering, chemistry, MOLECULAR-DYNAMICS, Frenkel defect, POINT-DEFECTS, 0210 nano-technology, OXYGEN VACANCY, NEPTUNIUM
الوصف: Molecular dynamics (MD) simulations were performed to determine thermal expansion, thermal conductivity and diffusional properties of Th1-xNpxO2 and U1-xNpxO2 mixed oxides (MOX). The linear thermal expansion coefficient (LTEC) of Th1-xNpxO2 MOX increases with NpO2 concentration, while that of U1-xNpxO2 MOX decreases. The degradation of thermal conductivity in U1-xNpxO2 is predicted to be far less significant compared to Th1-xNpxO2 because defect-phonon scattering is less pronounced in U1-xNpxO2. Addition of 6.25 atom% NpO2 in ThO2 degrades the thermal-conductivity of ThO2 by 24.0–12.5% in the 750–1000 K temperature range whereas up to 50 atom% NpO2 doping in UO2 degrades the thermal-conductivity only by 13–2.3%. Analytical expressions have been derived that describe the predicted lattice parameters and thermal conductivities over the full temperature and compositional ranges. Oxygen diffusivity is higher in UO2 and NpO2 compared to ThO2. With the addition of Th4+ or U4+ to NpO2, the diffusivity decreases due to the increase in the migration barriers caused by the larger ionic radius of Th4+ or U4+. The addition of Np4+ to ThO2 or UO2 decreases oxygen diffusion due to the preference for the oxygen vacancy to be adjacent to Np4+, even though the migration barriers decrease due to the smaller size of Np4+. Our MD calculated binding energies of the oxygen vacancy can be correlated with the isolated oxygen Frenkel pair defect energies (O-FPisolated) of individual actinide oxides calculated using same interatomic potential set. Moreover, MD calculated oxygen vacancy binding energy is consistent with that calculated using density functional theory.
تدمد: 0022-3115
DOI: 10.1016/j.jnucmat.2019.04.039
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::695acc8c5681c30214edcffacfe907f9
https://doi.org/10.1016/j.jnucmat.2019.04.039
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....695acc8c5681c30214edcffacfe907f9
قاعدة البيانات: OpenAIRE
الوصف
تدمد:00223115
DOI:10.1016/j.jnucmat.2019.04.039