Pillared-layered metal-organic frameworks for mechanical energy storage applications

التفاصيل البيبلوغرافية
العنوان: Pillared-layered metal-organic frameworks for mechanical energy storage applications
المؤلفون: Sven Rogge, Guillaume Maurin, Pascal G. Yot, Jong-San Chang, Michel Waroquier, Louis Vanduyfhuys, Su-Kyung Lee, Veronique Van Speybroeck, Jelle Wieme
المساهمون: Center for molecular modeling, Universiteit Gent = Ghent University [Belgium] (UGENT), School of Physics [UNSW Sydney] (UNSW), University of New South Wales [Sydney] (UNSW), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Korean Research Institute of Chemical Technology (KRICT), Korean Research Institute of Chemical Technology
المصدر: JOURNAL OF MATERIALS CHEMISTRY A
Journal of Materials Chemistry A
Journal of Materials Chemistry A, Royal Society of Chemistry, 2019, ⟨10.1039/C9TA01586H⟩
سنة النشر: 2019
مصطلحات موضوعية: STRUCTURAL TRANSITION, Materials science, MOLECULAR-DYNAMICS SIMULATIONS, ADSORPTION, Coordination polymer, FLEXIBILITY, BREATHING BEHAVIOR, 02 engineering and technology, PRESSURE, Force field (chemistry), MOFS, Molecular dynamics, chemistry.chemical_compound, Adsorption, COORDINATION POLYMER, General Materials Science, Volume contraction, ComputingMilieux_MISCELLANEOUS, Mechanical energy, Atmospheric pressure, STABILITY, Renewable Energy, Sustainability and the Environment, General Chemistry, 021001 nanoscience & nanotechnology, chemistry, Physics and Astronomy, Chemical physics, [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], FORCE-FIELD, Metal-organic framework, 0210 nano-technology
الوصف: Herein we explore the unique potential of pillared-layered metal–organic frameworks of the DMOF-1 family for mechanical energy storage applications. In this work, we theoretically predict for the guest-free DMOF-1 a new contracted phase by exerting an external mechanical pressure of more than 200 MPa with respect to the stable phase at atmospheric pressure. The breathing transition is accompanied by a very large volume contraction of about 40%. The high transition pressures and associated volume changes make these materials highly promising with an outstanding mechanical energy work. Furthermore, we show that changing the nature of the metal allows to tune the behavior under mechanical pressure. The various phases were revealed by a combination of periodic density-functional theory calculations, force field molecular dynamics simulations and mercury intrusion experiments for DMOF-1(Zn) and DMOF-1(Cu). The combined experimental and theoretical approach allowed to discover the potential of these materials for new technological developments.
وصف الملف: application/pdf
اللغة: English
تدمد: 2050-7488
2050-7496
DOI: 10.1039/C9TA01586H⟩
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::633ff39b05d0303d5f6415a0003dfa18
https://biblio.ugent.be/publication/8634558
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....633ff39b05d0303d5f6415a0003dfa18
قاعدة البيانات: OpenAIRE
الوصف
تدمد:20507488
20507496
DOI:10.1039/C9TA01586H⟩