Meta-analytic criterion profile analysis

التفاصيل البيبلوغرافية
العنوان: Meta-analytic criterion profile analysis
المؤلفون: Mark L. Davison, Brenton M. Wiernik, Michael P. Wilmot, Deniz S. Ones
المصدر: Psychological Methods. 26:186-209
بيانات النشر: American Psychological Association (APA), 2021.
سنة النشر: 2021
مصطلحات موضوعية: Information retrieval, Computer science, Homogeneity (statistics), Meta-analysis, Criterion validity, Regression analysis, Psychology (miscellaneous), PsycINFO, Pattern matching, Fungibility, Regression
الوصف: Intraindividual patterns or configurations are intuitive explanations for phenomena, and popular in both lay and research contexts. Criterion profile analysis (CPA; Davison & Davenport, 2002) is a well-established, regression-based pattern matching procedure that identifies a pattern of predictors that optimally relate to a criterion of interest and quantifies the strength of that association. Existing CPA methods require individual-level data, limiting opportunities for reanalysis of published work, including research synthesis via meta-analysis and associated corrections for psychometric artifacts. In this article, we develop methods for meta-analytic criterion profile analysis (MACPA), including new methods for estimating cross-validity and fungibility of criterion patterns. We also review key methodological considerations for applying MACPA, including homogeneity of studies in meta-analyses, corrections for statistical artifacts, and second-order sampling error. Finally, we present example applications of MACPA to published meta-analyses from organizational, educational, personality, and clinical psychological literatures. R code implementing these methods is provided in the configural package, available at https://cran.r-project.org/package=configural and at https://doi.org/10.17605/osf.io/aqmpc. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
تدمد: 1939-1463
1082-989X
DOI: 10.1037/met0000305
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::61c3b6f148518c6c1e17b0927f61ccef
https://doi.org/10.1037/met0000305
رقم الانضمام: edsair.doi.dedup.....61c3b6f148518c6c1e17b0927f61ccef
قاعدة البيانات: OpenAIRE
الوصف
تدمد:19391463
1082989X
DOI:10.1037/met0000305