Large-scale geometry of the saddle connection graph

التفاصيل البيبلوغرافية
العنوان: Large-scale geometry of the saddle connection graph
المؤلفون: Anja Randecker, Robert Tang, Valentina Disarlo, Huiping Pan
بيانات النشر: arXiv, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Surface (mathematics), Gromov boundary, Applied Mathematics, General Mathematics, 010102 general mathematics, Scale (descriptive set theory), Geometric Topology (math.GT), 01 natural sciences, Tree (graph theory), Connection (mathematics), Combinatorics, Set (abstract data type), Mathematics - Geometric Topology, FOS: Mathematics, Graph (abstract data type), Mathematics - Combinatorics, Combinatorics (math.CO), 0101 mathematics, Saddle, Mathematics
الوصف: We prove that the saddle connection graph associated to any half-translation surface is 4-hyperbolic and uniformly quasi-isometric to the regular countably infinite-valent tree. Consequently, the saddle connection graph is not quasi-isometrically rigid. We also characterise its Gromov boundary as the set of straight foliations with no saddle connections. In our arguments, we give a generalisation of the unicorn paths in the arc graph which may be of independent interest.
Comment: 28 pages, 9 figures; v2: corrected statement of Corollary 1.3 (not affecting any other part of the paper)
DOI: 10.48550/arxiv.2011.12975
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b2725d3cae53df54ee6d7d9c489dc4a
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....5b2725d3cae53df54ee6d7d9c489dc4a
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.48550/arxiv.2011.12975