Characterizing Distributions by Linearity of Regression of Generalized Order Statistics

التفاصيل البيبلوغرافية
العنوان: Characterizing Distributions by Linearity of Regression of Generalized Order Statistics
المؤلفون: Mohammad Ahsanullah, S. Samadi, Abbas Rasouli
المصدر: Journal of Statistical Theory and Applications (JSTA), Vol 15, Iss 2 (2016)
بيانات النشر: Atlantis Press, 2016.
سنة النشر: 2016
مصطلحات موضوعية: Statistics and Probability, Polynomial regression, Applied Mathematics, Order statistic, Linearity, Conditional expectation, 01 natural sciences, Regression, Computer Science Applications, 010104 statistics & probability, TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY, Statistics, Kernel regression, 0101 mathematics, lcsh:Probabilities. Mathematical statistics, generalized order statistics, Linearity of regression, lcsh:QA273-280, Mathematics
الوصف: Let X1,..., Xn be a random sample from an absolutely continuous (with respect to Lebesgue measure) distribution with the corresponding generalized order statistics X(1, n, m~, k),..., X(n, n, m~, k). In this paper, we present some characterization of distributions when linearity of regression E[X(s, n, m~, k)|X(r, n, m~, k)=x]=ax+b is identified.
اللغة: English
تدمد: 1538-7887
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::592355756260b2fe56f642285f5b6648
https://www.atlantis-press.com/article/25856820.pdf
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....592355756260b2fe56f642285f5b6648
قاعدة البيانات: OpenAIRE