Exascale Deep Learning for Climate Analytics

التفاصيل البيبلوغرافية
العنوان: Exascale Deep Learning for Climate Analytics
المؤلفون: Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat Prabhat, Michael Houston
المصدر: Kurth, T; Treichler, S; Romero, J; Mudigonda, M; Luehr, N; Phillips, E; et al.(2018). Exascale Deep Learning for Climate Analytics. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/3wc2j1nx
سنة النشر: 2018
مصطلحات موضوعية: FOS: Computer and information sciences, Good Health and Well Being, cs.DC, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
الوصف: We extract pixel-level masks of extreme weather patterns using variants of Tiramisu and DeepLabv3+ neural networks. We describe improvements to the software frameworks, input pipeline, and the network training algorithms necessary to efficiently scale deep learning on the Piz Daint and Summit systems. The Tiramisu network scales to 5300 P100 GPUs with a sustained throughput of 21.0 PF/s and parallel efficiency of 79.0%. DeepLabv3+ scales up to 27360 V100 GPUs with a sustained throughput of 325.8 PF/s and a parallel efficiency of 90.7% in single precision. By taking advantage of the FP16 Tensor Cores, a half-precision version of the DeepLabv3+ network achieves a peak and sustained throughput of 1.13 EF/s and 999.0 PF/s respectively.
12 pages, 5 tables, 4, figures, Super Computing Conference November 11-16, 2018, Dallas, TX, USA
وصف الملف: application/pdf
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58e8a772401b1cc9f3c799c24071f0c5
http://arxiv.org/abs/1810.01993
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....58e8a772401b1cc9f3c799c24071f0c5
قاعدة البيانات: OpenAIRE